
UniDAQ2 Application Note PRU

Document Revision 1.0 Jul 9, 2018

Background

The "Programmable Realtime Unit" subsystem is one of the most overlooked features of the TMS320C6747

DSP. Although this first generation implementation offers only limited capabilities compared to the up-to-date

PRU-ICSS in the Sitara and Keystone processor families, the PRU can significantly offload the DSP and

contribute to building robust and well structured programs. Unfortunately information and examples on

C6747 PRU usage is rare.

The PRU subsystem consists of two 32-bit Harvard-architecture RISC processors, operating at 228 MHz,

each with its own dedicated program and data RAM. The PRUSS also provides an event controller to route

system events into and out of the PRU. The PRU has access to all peripheral subsystems and memories

through the C6747 switched central resource matrix (SCR). The DSP loads, starts, halts or alters the PRU

program code at runtime. DSP and EDMA both have access to the PRU data RAM for data exchange.

The PRU subsystem operates completely independent of the DSP core. This enables the PRU to execute

hard real-time tasks reliably, even if the DSP code disables interrupts. Interrupt disabling is used by many of

the C6x signal processing libraries to allow software pipelining optimizations. On C674x processors this may

for example cause issues with the McASP peripherals: if an McASP transmit buffer is not serviced in time

and an underrun occurs, the McASP switches to error mode and from then on only sends zero data words.

There is no way to recover except resetting and re-initializing the McASP. In systems having to cope with

multiple external interrupt events such issues may occur only sporadically and can hardly be replicated with

test cases for debugging. Problems arise at times when multiple interrupt events accumulate while a library

function has simultaneously disabled the interrupt system.

Application Note

1www.dsignt.de

C6747 DSP Core / EDMA

512 x 8
Data
RAM

ALU Register
File

1K x 32
Program

RAM

INTC Event Controller

run
ctrl

SCR (Switched Central Resource Matrix)

P
er

ip
h

er
al

s
M

em
o

ri
es

An RTOS (real-time operating system) does not cure this situation, it is locked out itself while interrupts are

disabled. The use of DMA to service the McASP is a proven method to avoid buffer underruns. The C6747

EDMA controller operates independent of the DSP core and is not affected by interrupt locks. But DMA suf

fers from low efficiency if the transfer buffers are short, as it is often required by control and audio algorithms

to minimize latency. Usually DMA is implemented with a ping-pong buffer scheme: while one buffer is pro

cessed by the DSP, the other is filled or unloaded by the DMA. The DSP program must always keep track

which buffer to process.

The PRU can replace or complement the DMA and offer additional features like data sorting, ping-pong buf

fer management, apply offset calibration, clipping detection and more. The PRU may even provide watch

dog features and gracefully shut down DAC outputs if a DSP core hang is detected. An additional advantage

of PRU-driven McASP service shows during debug sessions: While the DSP is halted the PRU continues to

transfer data to and from McASP and prevents buffer over- and underruns. Of course the data will not be

updated during DSP halts, but as soon as execution is resumed the program will continue to work as ex

pected. If the McASP is serviced directly by the DSP, an emulation halt will result in a buffer underrun and

stop the McASP. If DMA is used, the buffer assignment may get lost during a processor halt.

UniDAQ2 PRU Usage

On the D.SignT UniDAQ2 data acquisition and processing system the PRU handles the following tasks:

ADC

Two 8-channel A/D converters transmit their data via four McASP serializers. The data arrives in an un

ordered channel sequence: 1-5-9-13-2-6-10-14... The PRU reads the McASP receiver channels and stores

them in the PRU data RAM, sorted in ascending channel order. An event is generated to inform the DSP

about the new data set. The DSP now retrieves the ADC data from this fixed PRU memory buffer and does

not need to care about ping-pong buffer management. The DSP is also free to read data in random order or

read the ADC buffer only partially. Doing so in direct McASP reads would cause receive buffer overruns.

Additionally the PRU monitors the ADC channels for clipping and reports the results in a sticky register: clip

ping events remain set until cleared by the DSP. This is a useful feature to detect sensor faults, as an indica

tor to reduce the pre-amplifier gain in audio processing, and for control algorithms where clipping may cause

loop instabilites. For block processing algorithms a DMA transfer can be triggered by the PRU event. The

EDMA controller then transfers the data from PRU data RAM to a larger buffer memory and the EDMA data

sorting capability can be fully exploited to format the data buffer in a manner suitable for the processing al

gorithm.

Application Note

2www.dsignt.de

C6747 DSP Core

AXR1[7]

AXR1[8]

AXR1[5]

AXR1[6]

DOUTA

DOUTB

DOUTB

DOUTA

ADC-1

ADC-2

McASP1 RX PRU

RXDMA Flag

Data I/F

INTC INTC

D
at

a
R

A
M

PRUEVT6

PRUSS

DATA

Clipping

DAC

The 8-channel DAC supports two modes of operation: updates are either synchronized to a sampling clock

or transparent, i.e. written on demand. In both cases the DSP interface is a buffer located in the PRU data

memory. In synchronized mode an McASP transmit event causes the PRU to read the data buffer, reformat

the data as required by the DAC serial protocol and transfer it to the McASP. The PRU then generates a no

tification event to the DSP or the EDMA controller to send new data. The DSP is not obliged to update all

DACs as it is required on direct McASP access.In transparent mode the PRU continuously monitors the data

buffer for changes.Each time one or more channels are changed, the PRU polls the McASP for a free trans

mit buffer and sends the new data with minimum delay. This mode assures the lowest latency for control

loops and offloads the DSP from McASP transmitter polling or interrupts.

Clock Generation

Only one of the two PRU processors is used to handle ADCs and DACs. The other one is free for additional

background tasks your application might benefit from. A typical example is adaptive ADC sampling clock

generation for systems requiring coherent sampling, such as power line monitoring. The frequency resolu

tion of the UniDAQ2 internal timers is limited by their 24 MHz master clock. The PRU however is clocked at

228 MHz and offers 9.5 times higher resolution. The PRU implements the high resolution timer by toggling

the McASP AHCLKX0 pin, which is routable to the ADC conversion start in the UniDAQ2 trigger system.

Conclusion

Readily compiled PRU code is part of the UniDAQ2 board support package and easily integrated into appli

cation projects. Only three function calls are requried: PRU_init, PRU_load, and PRU_run. PRU usage guar

antees in-time McASP service, facilitates a well-arranged programming interface, reduces the code size,

ommitts the buffer housekeeping, adds clipping detection, and provides a high resolution programmable

clock source for coherent sampling.

Application Note

3www.dsignt.de

McASP0

 PRU AHCLKX0

D
at

a
 R

A
M

PRUSSC6747 DSP Core

High/Low Time
PDOUT

UniDAQ
Trigger
System

DIN

DAC

AXR1[0]

McASP1 TX

TXDMA or
XDATA Flag

Data I/F

PRU

INTC INTC

D
a

ta
 R

A
M

PRUSS

C6747 DSP Core

PRUEVT7

DATA

Appendix

UniDAQ2 loopback program using PRU

/***
 includes
***/
#include <BoardSupport/inc/unidaq2.h> /**< Unidaq2-ADDA BIOS */
#include <BoardSupport/inc/i2c1.h> /**< Unidaq2-ADDA I2C */
#include <BoardSupport/inc/adda.h> /**< Unidaq2-ADDA ADC DAC */
#include <Common/pru.h> /**< PRU subsystem */
#include <Common/pru/pru_adda_bin.h> /**< PRU program code */

/***
 globals
***/
volatile int32_t gNewDataFlag;

/***//**
 @brief PRU interrupt for ADC
 @param -
 @return -
***/
__interrupt void adcInt (void)
{
 /***
 set "new data" flag
 ***/
 gNewDataFlag = 1;
}

/***//**
 main program
***/
void main (void)
{
 /***
 locals
 ***/
 PRU_addaOvly PRU_addaRegs = (PRU_addaOvly) PRU0_DRAM;
 int32_t idx;

 /***
 I2C Initialization
 ***/
 I2C1_init (400000, 0x7E);

 /***
 Interrupt System Initialization
 ADCs and DACs operate synchonously, only the ADC int is required
 ***/
 INT_init (&INT_vectorTable);
 INT_sel (15, INT_EVT_IIC1_INT);
 INT_instFunc (15, I2C1_int);
 INT_sel (4, INT_EVT_PRUEVT6);
 INT_instFunc (4, adcInt);
 INT_start();

 /***
 ADC Initialization:
 +/-5V range
 no oversampling
 sampling clock generated by Timer A, 100kHz
 ***/
 ADC_config (RANGE_5, OS_NONE, ADCTRIG_TIMERA, 100000);

 /***
 DAC Initialization:
 +/-5V range
 synchronized to ADC
 no calibration
 no monitor output
 ***/
 DAC_config (DAC_CFGREG_GAIN4, DACTRIG_ADC, 0, NULL, NULL, REF2V5, MON_OFF);

Application Note

4www.dsignt.de

 /***
 enable PRU, load and execute PRU code
 ***/
 PRU_init();
 PRU_load(0, (void *)PRUCode, sizeof(PRUCode));
 PRU_run(0);

 /***
 start data acquisition
 ***/
 gNewDataFlag = 0;
 DAC_start();
 ADC_start();

 /***
 main program loop: move ADC data to DACs
 ***/
 for (;;)
 {
 if (gNewDataFlag)
 {
 gNewDataFlag = 0;

 for (idx=0; idx<8; idx++) /* loopback ADC -> DAC */
 {
 PRU_addaRegs->dac[idx] = PRU_addaRegs->adc[idx];
 }

 if (PRU_addaRegs->clip) /* check ADC clipping bitfield */
 {
 /* handle clipping here, then clear the register */
 PRU_addaRegs->clip = 0;
 }
 }
 }
}

Disclaimer

This application note is provided to assist designers incorporating D.SignT products. The information is pro

vided “as is” without any warranty for correctness or fitness for a specific application. The designer is obliged

to perform his own analysis and assesments, to ensure compliance with applicable safety regulations and

other requirements, and ensure no patents might be infringed.

Application Note

5www.dsignt.de

	UniDAQ2 Application Note PRU
	Background
	UniDAQ2 PRU Usage
	ADC
	DAC
	Clock Generation

	Conclusion
	Appendix
	Disclaimer

