

Create | Digitise | Connect | Secure

VF370 User Manual

03010-06831

Rev. 01

The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Etion Create makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Furthermore, Etion Create reserves the right to make changes to any product herein to improve reliability, function or design, without obligation of Etion Create to notify any person of such revision or changes. Etion Create does not assume any liability arising out of applications or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

Copyright Etion Create (Pty) Ltd

All rights reserved.

Revision History

Revision	Date	Changes
01	2019-11-26	First release of the VF370 User Manual

Table of Contents

Chapters Overview Document Conventions Technical Support	
Document Conventions Technical Support	5 5 6
Technical Support	5 6
	6
	6
1 Acronym List	8
2 Introduction	•
2.1 The VF370 OpenVPX SBC	9
2.2 Features	11
2.3 Product Applications	13
2.4 Reference Documents	13
3 Product Overview	14
3.1 Overview of the VF370	15
3.2 Board Management	15
3.3 VPX Interface	17
3.4 Processor interfaces	20
3.5 FPGA Interfaces	22
3.6 VF370 Clock Structure	25
3.7 Development and test interfaces	27
4 Specifications	32
4.1 General Specifications	33
4.2 Environmental Specification	34
4.3 Power Supply Requirements	36
4.4 Ordering Information	
5 Installation and Setup	38
5.1 Unpacking the product	39
5.2 Installing the VF370 Hardware	39
5.3 Installing the VF370 Software and Firmware	40
5.4 Installing FW development tools	41
5.5 Installing a terminal program	41
6 Operating Guide	42

6.1	Configuration Settings	
6.2	Status Indicators	
6.3	VF370 Software	
6.4	VF370 Firmware	
7	BIOS	52
7.1	BIOS settings	

Table of Tables

Table 1: Voltage and temperature limits	16
Table 2: Processor pin mappings	21
Table 3: VF370 FPGA FMC signals	23
Table 4: VF370 clock description	25
Table 5: DIP Switch-3 settings	28
Table 6: J9 – SATA Power connector	29
Table 7: J10 – P0 JTAG	29
Table 8: J12 - IO header	30
Table 9: J13 – VBAT connector	30
Table 10: VF370 air-cooled non-coated specifications	34
Table 11: VF370 conduction-cooled coated specifications (ruggedization level 4)	34
Table 12: VF370 Power supply requirements (E3930)	36
Table 13: Directory structure and file locations.	41
Table 14: Front panel LED indicators (from top to bottom)	44
Table 15: VPX BIOS settings	53
Table 16: PCIe Settings	54
Table 17: Ethernet configuration	54
Table 18: I/O Settings	54

Table of Figures

Figure 1: VF370 Functional Block Diagram	10
Figure 2: BM Temperature sensor locations	16
Figure 3: VF370 Slot Profile	17
Figure 4: VPX P0 pin assignments	18
Figure 5: VPX P1 pin assignments	18
Figure 6: VPX P2 pin assignments	19
Figure 7: VF370 FPGA signals	22
Figure 8: FPGA clock inputs	24
Figure 9: VF370 clock structure	25
Figure 10: VR307 RTM	27
Figure 11: SW3 setting for normal operation	28
Figure 12: SW3 setting for FPGA programming and debugging	28
Figure 13: SW3 setting for BM programming	29
Figure 14: J15 high-density connector pinout	31
Figure 15: VF370 Air-cooled outline drawing.	35
Figure 16: VF370 Conduction-cooled outline drawing.	35
Figure 17: Front Panel and module bottom LED layout	43
Figure 18: ifconfig terminal window	46
Figure 19: Test API output	47
Figure 20: Arrow USB Blaster setup	49
Figure 21: FPGA programming via JTAG	50

About This Manual

This manual consists of information to simplify your installation, configuration and operation of the VF370 board. *About this Manual* describes the contents of each chapter and includes document conventions and technical support information

Chapters Overview

About This Manual - This chapter provides an overview of the chapters, document conventions, and technical support information.

Chapter 1 Acronym List - This chapter expands abbreviations used in this manual.

Chapter 2 Introduction - This chapter provides a brief introduction to the VF370 3U FPGA and Intel Atom OpenVPX single board computer. It also provides a list of reference documents whose information supplements this user manual.

Chapter 3 Product Overview - This chapter provides detailed functional information for the VF370.

Chapter 4 Specifications - This chapter provides the specifications for the functional areas of the VF370.

Chapter 5 Installation and Setup - This chapter includes instructions for unpacking and installing the VF370.

Chapter 6 Operating Guide - This chapter provides information on proper operation of the VF370.

Chapter 7 BIOS - This chapter describes the VF370 BIOS settings.

Document Conventions

Icon	Use
	Alerts you to the important details regarding the setup and maintenance of your system.
N	Alerts you to potential damage to the board during system setup and installation.

The following icons are used in this manual to emphasize setup or system information:

Technical Support

Should you require additional technical information or assistance, contact Etion Create (Pty) Ltd:

Telephone:	+27 12 6789 740
Facsimile:	+27 12 6789 741
E-Mail:	support.etioncreate@etion.co.za
Web Site:	https://www.etion.co.za/

1 Acronym List

AC	Air cooled
API	Application Programming interface
ATA	Advanced Technology Attachment
AUX	Auxiliary
BMP	Board Management Processor
BSP	Board Support Package
CBIT	Continuous BIT
CC	Conduction Cooled
CLK	Clock
CML	Current Mode logic
CPU	Central Processing Unit
DDR	Double Data Rate
DMA	Direct Memory Access
ECC	Error Correcting Code
EP	Endpoint
ESD	Electrostatic Discharge
ETH	Ethernet
FDK	FPGA Firmware Development Kit
FMC	FPGA Mezzanine Card
FPGA	Field Programmable Gate Array
GND	Ground
GUI	Graphical User Interface
I2C	Inter-Integrated Circuit
JTAG	Joint Test Action Group
KB	Kilo Byte(s)

Light Emitting Diode

LED

MB	Mega Byte(s)
Mb	Mega Bit(s)
MLC	Multi-level Cell
MT/s	Mega Transfers per second
NTB	Non-Transparent Bridge
OS	Operating System
PBIT	Power-up BIT
PCA	Printed Circuit Assembly
PCB	Printed Circuit Board
PCI	Peripheral Component Interconnect
PCle	PCI Express
PHY	Physical interface
PSU	Power supply
RAM	Random Access Memory
RTC	Real Time Clock
RTM	Rear Transition Module
SATA	Serial ATA
SBC	Single-board Computer
SFP	Small form-factor pluggable
SOC	System On Chip
SPI	Serial Peripheral Interface
SSD	Solid State Drive
SSH	Secure-Shell
TDP	Thermal Design Power
UART	Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

2 Introduction

This chapter provides a brief introduction to the VF370 3U FPGA and Intel Atom OpenVPX single board computer. It also provides a list of reference documents whose information supplements this user manual.

2.1 The VF370 OpenVPX SBC

The VF370 is a 3U OpenVPX module that leverages on Intel APL-I E3900 series processors and Intel Cyclone® V FPGA technology to provide a single board computer (SBC) ideally suited for VPX system controller and general computing tasks typically required by VPX systems. Refer to the functional block diagram in Figure 1.

The on-board Intel Atom E3900 SoC is a highly integrated low power processor providing features such as memory controller, 4k graphics capability and high definition audio interface amongst others. (Refer to [3] for more information). Dual- or quad-core CPUs with three different speed grades are available depending on the build option selected. The processor is connected to an FPGA and to the backplane and through one 4 lane (x4) two 4 lane PCIe interfaces respectively. The APL-I E3900 series processor is hereafter referred to as the Processor.

The VF370 provides 4GB of DDR3 Processor memory with ECC, onboard 32GB SSD mass storage and two 1Gbps network interfaces. Other build options for onboard mass storage is available.

The VF370 uses an Intel Cyclone[®] V GX/GT FPGA device to implement a high-speed processing node. The FPGA is available to the user for custom firmware development. Depending on the FPGA resources and interface bandwidth required, one of four different FPGAs from the Cyclone[®] V GX and GT families can be populated on the VF370.

The Cyclone® V FPGA has one bank of dedicated DDR3 memory.

The VF370 FMC carrier card, combined with a variety of FMC cards, provides a modular solution that accommodates a wide range of I/O requirements. High-speed FPGA serial interfaces to the FMC site creates abundant FPGA IO throughput. FMC front panel IO's can optionally be routed to the P2 VPX connector for FMC backplane I/O.

This is accomplished by routing FMC User I/O signals to a custom FMC IO connector, which loops these signals back to the VF370 module and routes it to the P2 backplane connector. The FMC User IO's can then be accessed through the P2 backplane interface of the VF370.

The VF370 conforms to the OpenVPX standard as a Payload module with System Controller capability. Both aircooled and conduction cooled versions are available.

Figure 1: VF370 Functional Block Diagram.

2.2 Features

- Processor
 - > CPU cores: Two/four cores @ 1.3GHz or 1.6GHz base frequency respectively (up-to 2GHz burst)
 - > Intel HD graphics supporting 4096x2160 resolution @ 60Hz
 - Single-channel 4GB DDR3 @ 1333MT/s with ECC
 - > On board SATA SSD (32 GB standard build option)
- ✤ High speed FPGA processing with Intel Cyclone® V GX/GT FPGA
 - > GX Device variants: 5CGXD7, 5CGXD9
 - ➢ GT Device variants: 5CGTD7, 5CGTD9
 - Embedded device memory: 4.4 12.2 Mb
 - Embedded device multipliers (18x18): 300 684
 - > The Processor and FPGA are connected through a PCIe (x4) interface

FPGA external DDR memory

Single bank of 2GB DDR3 @ up to 666MT/s (arranged as 256M x 32-bit)

VPX Interface

Comply with OpenVPX MOD3-PAY-2F2U-16.2.3-3 module profile

- > PCIe Gen2 Data plane (2x Fat Pipes)
- GigE Control plane 1000BASE-BX/KX or external PHY (2x Ultra-Thin Pipes)
- > Payload module with System Controller capability

Supports FMC User I/O on P2

> This feature is only available through the FMC I/O connector

VITA 57 FPGA MEZZANINE CARD (FMC) site

- > 4x High-Speed Serial Interface (HSSI) lanes
- > 58x Differential LVDS interfaces on LA and HA

> Custom FMC I/O connector for backplane I/O from FMC

✤ FPGA configuration

The FPGA supports the following configuration options:

- > Automatic configuration after power-up from on-board non-volatile storage
- Configuration through JTAG (M_USB)
- Configuration through the Processor
 Note: This is not currently supported in the API

Software & Firmware support

Linux distribution and BSP (Board support package)

- User API and example application
- > API Reference Manual
- > PCIe driver for FPGA with DMA support
- > Example application showing FPGA memory access and DMA

Contact us for information regarding the FPGA Firmware Development Kit (FDK).

Custom application/driver software and FPGA firmware development is available on request.

Companion Module(s)

VR307 Rear Transition Module (RTM)

2.3 Product Applications

The VF370 is targeted at applications requiring the following:

- > 3U VPX compatible single board computer
- > High-performance low-power Intel X86 multi-core Processing
- > FPGA processor for custom firmware applications and co-processing

2.4 Reference Documents

The following sources provide important reference information that may provide useful input for achieving optimal operation of the VF370:

- [1] VF370 API Reference Manual
- [2] VF370 Firmware Reference Manual (part of the FDK)
- [3] https://www.intel.com/content/www/us/en/embedded/products/apollo-lake/overview.html

3 Product Overview

This chapter provides detailed functional information for the VF370.

3.1 Overview of the VF370

Figure 1 shows a functional block diagram of the VF370 with I/O build option configurations.

- The Board Management function controls the power sequencing, reset signals and health monitoring.
- The Processor boots into the Linux kernel and, through its non-transparent (NTB) PCIe bridge, allows multimaster communication with other VPX slots if required. The NTB option is enabled/disabled in the BIOS.
- The FPGA boots from on-board non-volatile memory.
- The JTAG_-, SPI_- and USB_Switch functions respectively control JTAG access, boot flash programming and routing of maintenance USB/UART interfaces.

3.2 Board Management

The VF370 board management controller (BM), a MAX10 device from Intel, performs the following functions:

- Start-up and PBIT
 - Monitors external power supplies (VS1=12V, VS2=3.3V and VS3=5V) for correct levels
 - Enables local power supplies
 - Performs reset actions (nSYSRESET and local resets)
 - Check critical board temperatures:
 - PCIe Switch, FPGA, FPGA Core supply, FMC temperature
- CBIT: Continuously monitors external voltages, local voltages, currents and temperatures
 - Makes available voltages, temperatures and other information to the Processor Linux host through the API via the SOC_BM_SPI interface.
 - Log PBIT and CBIT events in non-volatile memory.
- Shut-down the VF370 if any power supply or device temperature is out of its critical limits. Refer to Table 1 for voltage and temperature warning can critical limits and to for the temperature sensor locations.

Description	Critical Minimum	Warning Minimum	Warning Maximum	Critical Maximum
VS1	10.5V	11.0V	12.6V	12.8V
VS2	3.0V	3.15V	3.45V	3.5V
VS3	4.6V	4.75V	5.2V	5.4V
SoC DDR temperature (T1, bottom side)			90°C	100°C
PCIe switch temperature (T2)			100°C	115°C
FPGA temperature (T3)			90°C	100°C
VF370 temperature (T4)			90°C	100°C
FPGA core supply temperature (T5)			90°C	100°C
FMC site temperature (T6)			90°C	100°C
BM die temperature (T7)			100°C	110°C
PMIC die temperature (T8)			100°C	115°C

Table 1: Voltage and temperature limits

Figure 2: BM Temperature sensor locations

3.3 VPX Interface

The VF370 complies with the 3U OpenVPX slot profile SLT3-PAY-2F2U-14.2.3 as shown in Figure 3.

The VF370 standard module profile (MOD3-PAY-2F2U-16.2.3-3) provides the following VPX interfaces:

- P0 as per ANSI/VITA65 OpenVPX
- Two PCIe Gen2 Data plane Fat Pipes (4X) on DP01and DP02 MOD3-PAY-2F2U-16.2.3-3 also supports PCIe Gen1 on the Data plane
 - The following additional Data plane options are available in the BIOS:
 - DP01 (x4 PCIe) and DP02 to DP05 (four x1 PCIe)
 - DP01 to DP08 (eight x1 PCIe)
- Two GigE 1000BASE-BX/KX Control plane Ultra-Thin Pipes on CPutp01 to CPutp02 with external PHY option for CPutp02.
- P1 and P2 User Defined I/O connections are customisable through build options. The default build option is:
 - SATA interface
 - User I2C interface (single-master only, multi-master not supported)
 Note: 100 kHz, 400 kHz, 1 MHz and 3.1 MHz clock rates supported by the processor
 - RS422 or RS485 (selectable in the BIOS)
 Note: Functionality based on the 16550 and 16750 industry standard UART
 - High Definition Audio interface
 - Display port interface
 - o 24 differential FMC User IOs

Plug-in module P0	G	F	E	D	с	В	A
1	+12V_D	+12V_D	+12V_D	No Pad	+3.3V_D	+3.3V_D	+3.3V_D
2	2 +12V_D +12V_D		+12V_D	No Pad	+3.3V_D +3.3V_D		+3.3V_D
3	+5V_D	+5V_D	+5V_D	No Pad	+5V_D	+5V_D	+5V_D
4	IPMBB_SCL	IPMBB_SDA	GND	NC (-12V Aux)	GND	nSYSRESET	NVMRO PROG_ID[2]
5	nGAP	nGA4	GND	+3.3V_Aux	GND	IPMBA_SCL	IPMBA_SDA
6	nGA3	nGA2	GND	+12V_Aux	GND	nGA1	nGA0
7	тск	GND	TDO	TDI	GND	TMS	nTRST
8	GND	REF_CLK-	REF_CLK+	GND	AUX_CLK-	AUX_CLK+	GND

The following three figures show the VF370 VPX connector pin assignments.

Figure 4: VPX P0 pin assignments

Plug-in			G	F	E	D	с	В	A	
m	odul	e P1	1							
1	rt 1	11		GDiscrete1 PROG_ID1	GND	DP01-TD0-	DP01-TD0+	GND	DP01-RD0-	DP01-RD0+
2	ne Po		X4	GND	DP01-TD1-	DP01-TD1+	GND	DP01-RD1-	DP01-RD1+	GND
3	a Pla		٢	P1-VBAT	GND	DP01-TD2-	DP01-TD2+	GND	DP01-RD2-	DP01-RD2+
4	Dat	5		GND	DP01-TD3-	DP01-TD3+	GND	DP01-RD3-	DP01-RD3+	GND
5	t 2	8		nSYS_CON	GND	DP02-TD0-	DP02-TD0+	GND	DP02-RD0-	DP02-RD0+
6	e Port		4 X1	GND	DP02-TD1-	DP02-TD1+	GND	DP02-RD1-	DP02-RD1+	GND
7	ta Plano		1 X4 /	Reserved P1-REF_CLK-SE	GND	DP02-TD2-	DP02-TD2+	GND	DP02-RD2-	DP02-RD2+
8	Da			GND	DP02-TD3-	DP02-TD3+	GND	DP02-RD3-	DP02-RD3+	GND
9				GPIO4/ USBB_Pwr	GND	SATA-TD-/ USB3B-TD-	SATA-TD+/ USB3B-TD+	GND	SATA-RD-/ USB3B-RD-	SATA-RD+/ USB3B-RD+
10		_		GND	USB3A-TD-	USB3A-TD+	GND	USB3A-RD-	USB3A-RD+	GND
11		r Defined		USBA_Pwr	GND	I2C_SCL/ MDCLK1/ USB2B-	I2C_SDA/ MDIO1/ USB2B+	GND	USB2A-	USB2A+
12		Use		GND	DCI-TD-	DCI-TD+	GND	DCI-RD-	DCI-RD+	GND
13				M_USB_Vbus	GND	MDCLK2	MDIO2	GND	M_USB-	M_USB+
14				4	GPIO3 (SPI_CLK)	GPIO2 (SPI_nCS)	GND	GPIO1 (SPI_DO)	GPIO0 (SPI_DI)	GND
15		itrol Ine		nMaskable_Reset	GND	Cputp02-TD-	Cputp02-TD+	GND	Cputp02-RD-	Cputp02-RD+
16		-Da		GND	CPutp01-TD-	CPutp01-TD+	GND	CPutp01-RD-	CPutp01-RD+	GND

Figure 5: VPX P1 pin assignments

Note: Signals with two or more functions are selectable through build options. The first function described is the default option. For example, pin E9 is SATA-TD- by default, but can be changed to USB3B-TD- through a build option.

Plug-in			-	-	,	•		
mod	ule P2	G	F	E	U	L L	в	^
1		HDA_nRST	GND	DDI1-/ FMC_DP30-	DDI1+/ FMC_DP30+	GND	DDI0-/ FMC_DP31-	DDI0+/ FMC_DP31+
2	2 GND DDI3-/ FMC_DP28- DDI3+/ FMC_DP28+ 3 HDA_BCLK GND HDA_SDO/ FMC_DP26-		GND	DDI2-/ FMC_DP29-	DDI2+/ FMC_DP29+	GND		
3			HDA_SDI/ FMC_DP26+	GND	DDI_Aux-/ DDI_DDC_SDA/ FMC_DP27-	DDI_Aux+/ DDI_DDC_SCL/ FMC_DP27+		
4		GND	RS485B- RS422-TD-/ FMC_DP24-	RS485B+ RS422-TD+/ FMC_DP24+	GND	RS485A- RS422-RD-/ FMC_DP25-	RS485A+ RS422-RD+/ FMC_DP25+	GND
5	5 HDA_SYNC GND FMC_D		FMC_DP22-	FMC_DP22+	GND	FMC_DP23-	FMC_DP23+	
6	ef.	GND	FMC_DP20-	FMC_DP20+	GND	FMC_DP21-	FMC_DP21+	GND
7	يد D	CPLD_JTAGEN GND FMC_DP18-		FMC_DP18+	GND	FMC_DP19-	FMC_DP19+	
8	U se	GND	FMC_DP16-	FMC_DP16+	GND	FMC_DP17-	FMC_DP17+	GND
9		nPROG_Sel	GND	FMC_DP14-	FMC_DP14+	GND	FMC_DP15-	FMC_DP15+
10		GND	FMC_DP12-	FMC_DP12+	GND	FMC_DP13-	FMC_DP13+	GND
11		M_UART_TX	GND	FMC_DP10-	FMC_DP10+	GND	FMC_DP11-	FMC_DP11+
12		GND	FMC_DP8-	FMC_DP8+	GND	FMC_DP9-	FMC_DP9+	GND
13		PROG_ID0 M_UART_RX	GND	FMC_DP6-	FMC_DP6+	GND	FMC_DP7-	FMC_DP7+
14		GND	FMC_DP4-	FMC_DP4+	GND	FMC_DP5-	FMC_DP5+	GND
15		DDI_HPD	GND	FMC_DP2-	FMC_DP2+	GND	FMC_DP3-	FMC_DP3+
16		GND	FMC_DP0-	FMC_DP0+	GND	FMC_DP1-	FMC_DP1+	GND

Figure 6: VPX P2 pin assignments

Note: Signals with two or more functions are selectable through build options. The first function described is the default option.

- M_UART_TX/RX are the maintenance UART signals. During power-up this interface initially displays the boot-up information from the board management processor. As soon as the Processor start-up sequences succeeded, the M_UART interface switches over to the Processor maintenance UART interface to display boot information and provide access to the BIOS by pressing "2" during boot-up.
- > To access the FMC_DPx signals through P2, an FMC with an FMC IO connector is required.

3.4 Processor interfaces

The Processor power and reset de-assertion are controlled by the board management processor. Default BSP is based on Linux operating system and provides support for the following features either through the OS or the API:

- On board SATA SSD (Gen1 1.5 Gbps)
- On board user EEPROM (512Kb) (API)
- Module health information (from BM) (API)
- User GPIO control (API)
- User I2C interface (OS)
- RS485/422 interfaces selectable in BIOS (OS)
- External SATA interface (OS)
- External USB3 interface (OS)
- > 1000Base-BX/KX and external PHY (default on CPutp02) Ethernet support (OS)
- PCIe Switch interfaces (Up-to Gen2) (OS)
 - x4 PCIe from Processor to the PCIe Switch
 - o x4 PCIe from PCI Switch to the FPGA through the PCIe switch
 - The PCIe Switch backplane interfaces can be repartitioned through the BIOS as follows:
 - DP01 (x4 PCle) and DP02 (x4 PCle)
 - DP01 (x4 PCle) and DP02 to DP05 (four x1 PCle)
 - DP01 to DP08 (eight x1 PCle)
 - NTB on either DP01 or D02 selectable through the BIOS

3.4.1 Processor interface/pin mappings

The table below lists the Processor interface/pin mappings for applicable user interfaces, amongst others GPIO, I2C, UARTS etc.

Interface	Processor pin mapping	Description	
I2C_SCL	LPSS_I2C0_SCL	User I2C	
I2C_SDA	LPSS_I2C0_SDA		
RS422/485B_TX	LPSS_UART0_TX		
RS422/485B_RX	LPSS_UART0_RX	RS422 / RS485-B	
RS485A_TX	LPSS_UART1_TX	50.05	
RS485A_RX	LPSS_UART1_RX	RS485-A	
M_UART_TX	LPSS_UART2_TX		
M_UART_RX	LPSS_UART2_RX	Maintenance UAR I	
AuxCLK Out	GPIO_27		
AuxCLK In	GPIO_183	AUX Clock	
GDiscrete1 Out	GPIO_0	GDiscrete1	
GDiscrete1 In	GPIO_1		
SOC_FPGA_GPIO[3]	GPIO_160	SoC <=> FPGA GPIOs	
SOC_FPGA_GPIO[2]	GPIO_159		
SOC_FPGA_GPIO[1]	GPIO_158		
SOC_FPGA_GPIO[0]	GPIO_157		

3.5 FPGA Interfaces

The following main FPGA interfaces are shown in Figure 7:

> PCle interface

The FPGA is connected to the Processor through a high speed x4 PCIe interface via the Gen2 PCIe Switch (GXB_L0 bank). PCIe link speed is determined by FPGA build option (GX = Gen1, GT = GEN2). The FPGA is also accessible through the backplane PCI interfaces (DP01 and DP02).

> DDR3 interface

One bank of 2GB DDR3 RAM @ up to 666MT/s (arranged as 256M x 32-bit) is connected to FPGA banks 8A and 7A.

Miscellaneous interfaces

The FPGA optionally connects to the Processor through 4x GPIOs.

> FMC interface

This interface is described in more detail in the following section.

Figure 7: VF370 FPGA signals

3.5.1 FPGA FMC Interface

FMC LA and HA busses are connected to banks 3B, 5B, 4A and 6A and supports the following:

Signal Name	LVDS	LVCMOS/LVTTL
FMC_LA[310]	Bidirectional	Bidirectional
FMC_LA[33,32]	TX only	Bidirectional
FMC_HA[110]	Bidirectional (Emulated LVDS)	Bidirectional
FMC_HA[2312]	TX only	Bidirectional

> FMC multi-Gig signals are connected to FPGA GXB_L1 and GXB_L2 banks and support:

The maximum input voltage on FPGA signals from the FMC is 3.3V.

Descriptions of the FPGA FMC signals are shown in Table 3.

Signal	FPGA Pins	I/O Standard	Description
LA[0033]p LA[0033]n	2x 68	LVCMOS or LVDS	Differential pairs or single-ended signals to/from FPGA
HA[0023]p HA[0023]n	2x 48	LVCMOS or LVDS	Differential pairs or single-ended signals to/from FPGA
CLK[01]_M2Cp,n	4	LVDS	Two Differential Clocks from FMC to FPGA
CLK[23]_BIDIRp,n	4	LVDS	Two Bidirectional differential clocks between FMC and FPGA
CLK_DIR	1	2.5V	Direction signal for CLK[23]_BIDIR
GBTCLK[01]_M2C	4	CML / LVDS	FPGA Reference clock inputs for FMC transceiver signals DP[09]
DP[03]_M2C	8	CML	4x HSSI transceiver inputs on FPGA
DP[03]_C2M	8	CML	4x HSSI transceiver outputs on FPGA

Table 3: VF370 FPGA FMC signals

Note that the FMC_LA[] and FMC_HA[] signals connect to LVDS transmitter (Tx) and LVDS receiver (Rx) pins on the FPGA, since the FPGA LVDS pins are uni-directional.

3.5.2 VF370 FPGA Configuration

The VF370 FPGA can be configured through the following devices/interfaces:

- > Active serial configuration through 256Mb onboard flash.
 - The onboard configuration flash can be programmed by the Processor through the API. (currently not supported)
- > Passive serial configuration controlled by the Processor.
- > FPGA configuration and configuration flash programming via JTAG.

3.5.3 VF370 FPGA Clock distribution

The following diagram shows the available clocks connected to the FPGA:

Figure 8: FPGA clock inputs

The sources of the FPGA clocks are discussed in following section.

3.6 VF370 Clock Structure

The following diagram shows an overview of the VF370 clock structure related to the FPGA and VPX clocks.

Figure 9: VF370 clock structure

The Processor generates required clocks from two dedicated oscillators

- 19.2MHz main clock
- > 32.768KHz RTC clock

The following table gives a description of the clocks shown in Figure 9:

Table 4: VF370 clock description

Clock Name	Clock Description	Clock	10
		Frequency	Standard
VDV	VPX Reference clock as described in	25MHz Default	
	VITA65.0. This clock can be driven or	100MHz	M-LVDS
KEF_CLK	received by the VF370 SBC.	Alternate	
VPX	VPX Auxiliary clock as described in	User	
AUX_CLK	VITA65.0	dependant	LVCIVIOS

Clock Name	Clock Description	Clock Frequency	IO Standard
PCIe_REFCLK_ETHA/B	Ethernet PCIe reference clocks generated by the Processor	100MHz	
PCIe_REFCLK_SW_FF	Fixed Frequency PCIe reference clock to PCIe Switch	100MHz	
PCIe_REFCLK_SW_SS	Spread Spectrum PCIe reference clock to PCIe Switch, generated by the Processor	100MHz	LP_HCSL
FPGA_GCLK	Global clock source for use with FPGA	100MHz	LP_HCSL
FPGA_DDR_CLK	FPGA DDR reference clock	50MHz	LVDS
FMC_CLK[1:0]	Differential clocks signals driven by mezzanine module to FPGA	FMC dependant	LVDS
FMC_CLK[3:2]	Differential bidirectional clock signals. The direction of these clocks are determined by the CLK_DIR signal	FMC/FPGA dependant	LVDS
GBTCLK[1:0]	Reference clock signals for FMC_DP data signals	FMC dependant	LVDS

The PCIe Switch isolates the spread spectrum clock domain generated by the Processor from the fixed frequency clock domain used for backplane and FPGA PCIe interfaces.

3.7 Development and test interfaces

The VF370 provides access to typical development and test interfaces through the **VR307** Rear Transition Module (RTM).

3.7.1 VR307

Figure 10: VR307 RTM

The VR307 (shown in Figure 10) is an RTM designed specifically for the VF370 SBC. It can be used during development, testing and integration of VF370 based systems. The following VF370 interfaces are available through the VR307:

- > Display port interface through mini Display Port connector
- USB3 host interface(s)
- RJ45 Ethernet interface on CPutp02
- SFP Ethernet interface on CPutp01
- Mini USB 2.0 device interface (M_USB) providing access to BM UART, Processor UART, BM JTAG or FPGA JTAG (depending on DIP switch selection) and boot memory (SPI)
- > External SATA interface with power connector
- > P0 JTAG interface (typically only used for board bring-up and maintenance purposes)
- Header (10x2) with GPIO and User I2C interfaces
- > High-density connector with FMC backplane IO, RS422 and HD Audio interfaces

> DIP Switch-3 is used to enable different JTAG programming modes (SW3):

State Description	SW3
Normal Operation	Figure 11
FPGA programming and signal tap from on-board Arrow Blaster	Figure 12
BM programming and signal tap from on-board Arrow Blaster	Figure 13

Table 5: DIP Switch-3 settings

Figure 12: SW3 setting for FPGA programming and debugging

Figure 13: SW3 setting for BM programming

- > Note SW4 on the RTM should always be set to all off.
- SW1 and SW2 provides push buttons for testing the nSYSRESET and nMaskable_Reset functionality respectively.

Pin #	Description 02360-01	Description 02360-02 and later
1	+12V DC output	+5.0V DC output
2	GND	GND
3	GND	GND
4	+5.0V DC output	+12V DC output

Table 6: J9 – SATA Power connector

Note: The +5.0V and 12V pin locations differ for the first (-01) and subsequent RTMs.

Pin #	Description		Pin #	Description
1	TCK		2	DGND
3	TDO		4	+3.3V
5	TMS		6	nTRST
7	open		8	open
9	TDI		10	DGND

Table 7: J10 – P0 JTAG

Pin #	Description	Pin #	Description
1	User_I2C_SCL	2	User_I2C_SDA
3	GND	4	GND
5	IPMBB_SCL	6	IPMBB_SDA
7	GND	8	User_GPIO[4]
9	IPMBA_SCL	10	IPMBA_SDA
11	+3.3V_AUX	12	User_GPIO[3]
13	M_UART_RX	14	M_UART_TX
15	+5.0V_VS3	16	User_GPIO[2]
17	GND	18	User_GPIO[1]/AUX_CLK_DIR1
19	+12.0V_VS1	20	User_GPIO[0]/REF_CLK_DIR1

Table 8: J12 - IO header

Note 1 – Ensure all switches on DIP switch SW4 are in the off position when using User_GPIO[1:0].

	Pin #	Description
	1	GND
	2	P1-VBAT
	3	P1-VBAT
	4	GND

Table 9: J13 – VBAT connector

	+3.3V	J15	+3.3V	
	+		+	
	2		1	
FMC DPI71 N	4		3	FMC DPI71 P
FMC DP[22] N	6		5	
FMC DP[22] P	8		7	FMC DP[23] N
	10		9	FMC DP[23] P
FMC_DP[20]_N	12		11	FMC_DP[6]_P
FMC_DP[20]_P	14		13	FMC_DP[6]_N
FMC DP[21] N	16		15	
FMC_DP[21]_P	18		17	FMC_DP[5]_P
	20		19	FMC DP[5] N
FMC DP[18] N	22		21	FMC DP[4] P
FMC_DP[18]_P	24		23	FMC_DP[4]_N
FMC_DP[19]_N	26		25	
FMC_DP[19]_P	28		27	FMC_DP[3]_P
	30		29	FMC_DP[3]_N
FMC_DP[16]_N	32		31	FMC_DP[2]_P
FMC_DP[16]_P	34		33	FMC_DP[2]_N
FMC DP[17] N	36		35	
FMC DP[17] P	38		37	FMC DP[1] P
	40		39	FMC DP[1] N
FMC DP[14] N	42		41	FMC DP[0] P
FMC_DP[14]_P	44		43	FMC_DP[0]_N
FMC_DP[15]_N	46		45	
FMC_DP[15]_P	48		47	RS422_RD_P-RS485A_P
	50		49	RS422 RD_N-RS485A_N
FMC_DP[12]_N	52		51	RS422_TD_P-RS485B_P
FMC_DP[12]_P	54		53	RS422_TD_N-RS485B_N
FMC_DP[13]_N	56		55	
FMC_DP[13]_P	58		57	HDA_nRST
	60		59	HDA_SYNC
FMC_DP[10]_N	62		61	HDA_SDI
FMC_DP[10]_P	64		63	HDA_SDO
FMC_DP[11]_N	66		65	HDA_BCLK
FMC_DP[11]_P	68		67	AUX_CLK_DIR
	70		69	AUX_CLK_P
FMC_DP[8]_N	72		71	AUX_CLK_N
FMC_DP[8]_P	74		73	•
FMC_DP[9]_N	76		75	REF_CLK_DIR
FMC_DP[9]_P	78		77	REF_CLK_P
	80		79	REF_CLK_N
	Ť	I		
	M1		M2	
		ST		
		SMD		
	LSHM	-140-06.0-L-DV-A-9	S-K-TR	
		•		
	<u> </u>	Ţ	_	_
	DGND		DG	ND
		<u> </u>		
		CGND		

Figure 14: J15 high-density connector pinout

31

4 Specifications

This chapter provides the specifications for the functional areas of the VF370.

4.1 General Specifications

- 1. OpenVPX MOD3-PAY-2F2U-16.2.3-3 module profile, refer to 3.3 for detail.
- 2. VITA 57 FMC site with LA and HA connections, refer to 3.5.1 for detail.
- 3. Processor options:
 - Intel Atom x5 E3930 (Standard build option)
 - 1. Dual-core Processor
 - 2. 1.3GHz base frequency (1.8GHz burst)
 - 3. TDP 6.5W
 - Intel Atom x5 E3940
 - 1. Quad-core 4 Processor
 - 2. 1.6GHz base frequency (1.8GHz burst)
 - 3. TDP 9.5W
 - Intel Atom x7 E3950
 - 1. Quad-core Processor
 - 2. 1.6GHz base frequency (2GHz burst)
 - 3. TDP 12W
- 4. Single-channel 4GB DDR3 @ 1333MT/s with ECC
- 5. On board SATA SSD @ Gen1 (1.5 Gbps), refer to 4.4 for SSD build option detail
- 6. External SATA interface @ up to Gen3 (6 Gbps)

4.2 Environmental Specification

4.2.1 Air-cooled module (non-coated)

Table 10: VF370 air-cooled non-coated specifications

Parameter	Class	Description
Operating Temperature	AC1	0 to +55 degrees Celsius with a linear air flow of > 2.5 m/s
Non-operating Temperature	C3	-50 to +100 degrees Celsius

4.2.2 Conduction-cooled module (ruggedization level 4, coated)

Table 11: VF370 conduction-cooled coated specifications (ruggedization level 4)

Parameter	Class	Description
Operating	CC4	-40 to +85 degrees Celsius at thermal interface
Temperature	004	Tested against MIL-STD-810 (Operational high and low temperature)
Non-operating	C4	-55 to +105 degrees Celsius
Temperature	64	Tested against MIL-STD-810 (Storage high and low temperature)
Random Vibration	-	Random vibration representing that of a helicopter with the following test level parameters: • $W_0 = 0.001 \text{ g}^2/\text{Hz}$ • $W_1 = 0.01 \text{ g}^2/\text{Hz}$ • $f_t = 500 \text{ Hz}$ • $f_1 = 6.6 \text{ Hz}, A_1 = 0.17 \text{ g}$ • $f_2 = 26.4 \text{ Hz}, A_2 = 2.5 \text{ g}$ • $f_3 = 52.8 \text{ Hz}, A_3 = 1.5 \text{ g}$ • $f_4 = 79.2 \text{ Hz}, A_4 = 1.5 \text{ g}$
		Tested against MIL-STD-810 (Category 14 - Rotary Wing Aircraft)
Shock	OS1	Tested against MIL STD 910
		(Method 516.6, Shock, Procedure I - Functional Shock)
		Fully operational at a relative humidity (RH) of 95%
Humidity - Tested according to MIL-STD-810 (Method 507.5, Procedure II – Aggravated)		Tested according to MIL-STD-810 (Method 507.5, Procedure II – Aggravated)
		Fully operational at an altitude of 50,000 ft
Altitude	-	Tested according to MIL-STD-810 (Method 500.5, Procedure II – Operation/Air Carriage)

Consult the factory for other ruggedization levels of the air- and conduction-cooled VF370 variants.

4.2.3 Dimensions

Size (PCA) 160 mm x 100 mm (excluding VPX connectors)

Width (air-cooled)..... 5HP (1") front panel

Width (conduction-cooled)...... 4HP (0.8")

Weight (PCA)..... ≤ 160 g (Populated PCB with connectors and key guides, no mechanics)

Weight (PCA with CC)..... ≤ 520 g (With conduction-cooled mechanics)

Figure 15: VF370 Air-cooled outline drawing.

Figure 16: VF370 Conduction-cooled outline drawing.

4.3 **Power Supply Requirements**

The typical PSU current requirements for the VF370 with the E3930 Processor are shown in Table 12.

PSU Rail	Nominal Voltage	Min/Max Voltage	Minimum Current	Typical Current	High Current
Vs1	+12.0V	10.5V / 12.8V	N/A	N/A	N/A
Vs2	+3.3V	3.0V / 3.5V	1.2A	1.35A	2.5A
Vs3	+5.0V	4.6 / 5.4V	0.9A	2A	ЗA
3.3V_AUX	+3.3V	3.0V / 3.5V	0.38A	0.4A	0.45A
Total Power			~ 10W	~ 16W	~ 25W

Table 12: VF370 Power supply requirements (E3930)

Power consumption is highly dependent on the module build option, operational mode, system configuration and application software and firmware.

4.4 Ordering Information

The VF370 ordering information for the different build options is shown below.

Generic order code = VF370-Pxy-Fxy-Sxy-Ex-Ux-Vx-Dx-Ax-Sxy-Mxyz-Rxy-Cxy

-Pxy -Fxy -Sxy -Ex -Ux -Vx -Dx -Ax -Sxy -Mxyz -Rxy -Cxy	·		
	-Cxy		Custom options (optional)
			x: 0= 0 to 55 degC, 1=TBC, 2=TBC, 3=TBC, 4=Fully Rugged
	-Rxy	1-4 : 0, 1	y: 0=un-coated, 1=conformal coated
	-Mxyz	A, C : 4, 5 : C, 0	Air, Conduction cooled, 4,5 HP width, Rear Cover present (C), No Rear cover (0)
	-Sxy	S/0 : S/0	Serial (RS422/485), No Serial (FMC I/Os) for RS485[A:B]
	-Ax	A, 0	HD Audio, No Audio output (FMC I/Os)
	-Dx	D, H, 0	DP, HDMI, No Display output (FMC I/Os)
	-Vx	3/5	3.3V, 5V GPIO voltage
	-Ux	I, M, U	I2C, MDIO, USB2
	-Ex	ES, EU	SATA, USB3
	-Sxy	32, 64, 00 : S, M	SATA SSD 32GB, 64GB, No SSD : SLC/MLC
	-Fxy	C7, C9, D7, D9, 00	C=CycloneV GX, D=CycloneV GT, 00=No FPGA
	-Pxy	15, 30, 40, 50, 00	E39xx variant, 00=No Processor

4.4.1 Standard air-cooled module

Order code = VF370-P30-FC7-S32M-ES-UI-V5-DD-AA-SSS-MA5C-R10

- E3930 Processor, CycloneV GX C7 FPGA, 32GB onboard MLC SSD
- External SATA, User I2C, 5V GPIO
- Display Port, HD Audio, 2x RS485 serial ports
- 5HP (1") front panel width, rear cover, not coated

4.4.2 Full Rugged conduction-cooled module

Order code = VF370-P30-FC7-S32M-ES-UI-V5-DD-AA-SSS-MC4C-R41

- E3930 Processor, CycloneV GX C7 FPGA, 32GB onboard MLC SSD
- External SATA, User I2C, 5V GPIO
- Display Port, HD Audio, 2x RS485 serial ports
- 4HP width (0.8"), rear cover, ruggedization level 4, conformal coated

Contact the factory for other order codes / build options.

5 Installation and Setup

This chapter includes instructions for unpacking and installing the VF370.

5.1 Unpacking the product

Before unpacking the product, note the following guidelines:

- 1. Check the shipping carton for damage. If the product's shipping carton is damaged upon arrival, request that the carrier's agent be present during unpacking and inspection of the board.
- Once unpacked, the board should be inspected carefully for physical damage, loose components etc. In the event of the board arriving at the customer's premises in an obviously damaged condition, Etion Create or its authorized agent should be notified immediately.
- 3. Make sure that the area designated for unpacking the product is a static electricity controlled environment. Unpack the VF370 board *only* on a ground conductive pad using an anti-static wrist strap grounded to the pad.
- 4. If moving the board is necessary, move it in an ESD protective container. **Note:** The VF370 board is shipped in an ESD protective container.

5.2 Installing the VF370 Hardware

Once the VF370 has been unpacked and inspected, it can be installed in a 3U VPX slot that is compatible with module profile MOD3-PAY-2F2U-16.2.3-3 and the following slot profiles:

SLT3-PAY-2F2U-14.2.3

Plugging the VF370 into any other slots is NOT supported and can seriously damage the VF370. Etion Create should be contacted on any questions regarding VF370 compatible VPX slots.

It is strongly advised that, when handling the VF370 and its associated components, the user should wear an earth strap to prevent damage to the board as a result of electrostatic discharge.

The board is installed and powered up as follows:

- Ensure that the VF370 unit is only handled inside of an ESD controlled environment.
- Inspect the VF370 VPX connectors for any damage or debris.
 M DO NOT insert the VF370 if any connector damage or debris is visible.
- Power down the VPX chassis/system.
- o Carefully insert the VF370 into the VPX slot and secure by using the front side handles.
- Apply power to the VPX chassis/system and observe the LEDs through the small front panel holes (See Table 14 for more detail)
 - BM1 LED should be solid green.
 - o BM2 LED should flash green at 1Hz.
 - Linux LED should flash a heartbeat sequence indicating the OS is running.
 - FPGA_CLK should flash yellow.
 - FPGA_USR1 should flash green.
 - SOC_L3 LED should be solid on, indicating a x4 PCIe Gen2 link to the PCIe SW.
 - FPGA_L11 should flash yellow, indicating a x4 PCIe Gen1 link to the PCIe SW.

5.3 Installing the VF370 Software and Firmware

The following is pre-installed on the VF370 module

- o **BIOS**
- o Software (BSP)
 - o Linux kernel and file system with API and example application
 - o Linux X86-64 drivers for FPGA
 - FPGA example application including
- Firmware
 - o FPGA binary

The VF370 FPGA is configured with a Firmware Reference Design binary after power-up, no FPGA firmware need to be installed onto the VF370. An unconfigured FPGA (blank image) is available on request.

The VF370 FPGA Firmware Development Kit (FDK) is a separate order item.

5.3.1 Directory structure and file locations

The VF370 directory structure and related file locations are shown in Table 13.

|--|

Location	Description Contents
Documents (NextCloud) – <u>VF370/docs</u>	
/BIOS	BIOS upgrade howto file
/BMP	BMP upgrade howto file
/BSP	Changelog.txt Yocto.howto v1.xx (API versions)
/Marketing	VF370 Product Brief
/Manuals/VF370_UM.pdf	User Manual
VF370 OS image (onboard SSD)	·
/usr/bin/test-api	API Test application
/usr/lib64/libbsp.so	API Library
/usr/bin/pci04_test	FPGA Test application
Tools	
https://shop.trenz- electronic.de/Download/?path=Trenz_Electronic/Software/ Drivers/Arrow_USB_Programmer	Arrow Blaster driver

5.4 Installing FW development tools

Quartus II Version 17.1 or later or Quartus Prime needs to be installed as development/debug environment for VF370 firmware. The Arrow USB blaster driver must be installed separately.

5.5 Installing a terminal program

A terminal program like Windows Hyper Terminal or PuTTY need to be installed on a test PC, since the VF370 does not have a GUI.

PuTTY can be found at <u>www.putty.org</u>

The VF370 is now ready for use, refer to § 6 for more information.

6 Operating Guide

This chapter provides information on proper operation of the VF370.

6.1 Configuration Settings

All configuration settings on the VF370 are performed through the BIOS settings, refer to § 7.1 for detail.

6.2 Status Indicators

The VF370 AC variant has thirteen front panel LEDs mounted on the bottom side of the PCB, visible through small pinholes in the front panel, refer to Figure 17. On the CC variant LED's are visible on the bottom of the module. The LED functions allocated are shown in Table 14.

Figure 17: Front Panel and module bottom LED layout

Position Front Panel	Position Module Bottom	LED	Status	Status description
B-1	BM1	D10	BM1	Solid Blue – Starting up Solid Yellow – Start up completed with warning Solid Green – Start up completed with no warning Solid Purple – BMP service routine completed with warning
B-2	BM2	D11	BM2	Flashing Green – BMP application executing Flashing Yellow and Green - Processor has access to log flash Flashing Cyan and Blue - Processor has access to FPGA configuration interface
S – 1	Linux	D33	Linux Heartbeat	OS is booted and running when flashing heartbeat sequence. Off – OS Boot failed
S-2	SATA	D2	SSD	Flashing indicates internal SSD activity
S-3	SOC USR	D32	Processor User LED	Functionality is programmable and determined by user. Default state is off.
F – 1	FPGA CLK	D15	FPGA_CLK	Flashing LED indicates FPGA internal clock is active
F-2	FPGA USR1	D16	FPGA User LED	Functionality is programmable and determined by user. Default state – flash green indicating successful configuration.
E – 1	ETHA	D3	ETH Port A	Off – no connection Flashing Green & Blue – 1Gbps link Flashing Green – 100Mbps/10Mbps link
E-2	ETHB	D4	ETH Port B	Off – no connection Flashing Green & Blue – 1Gbps link Flashing Green – 100Mbps/10Mbps link
L – 1	SOC L3	D13	Processor PCIe link	Solid Yellow – x4 Gen2 link established between Processor and PCIe SW Flashing Yellow - x4 Gen1 PCIe link established between Processor and PCIe SW
L-2	FPGA L11	D5	FPGA PCle link	Solid Yellow – x4 Gen2 link established between FPGA and PCIe SW Flashing Yellow - x4 Gen1 PCIe link established between FPGA and PCIe SW
L-3	DP1 L7	D14	Backplane DP01 PCle link	Solid Yellow – x4 Gen2 link established between DP01 and PCIe SW Flashing Yellow - x4 Gen1 PCIe link established between DP01 and PCIe SW
L-4	DP2 L15	D12	Backplane DP02 PCle link	Solid Yellow – x4 Gen2 link established between DP02 and PCIe SW Flashing Yellow - x4 Gen1 PCIe link established between DP02 and PCIe SW
	BMFAULT	D18	BM Fault indicator	Solid Red – Start-up Failed
	BOOTHALT	D23	Processor Boot Halt	Solid Red – Boot Halt signal to processor is asserted
	JSWCLK	D8	JTAGSW Clock	Flashing Yellow – JTAGSW clock is active
	JSWMODE	D27	JTAGSW Mode indicator	Solid Green – Normal (default) mode Solid Red – JTAG Switch reprogramming mode enabled Solid Blue – JTAG stearing mode enabled
	ID0	D26	See table Table 5	Solid Yellow - ID0 selection is switched on

Та	ble 14: Front pane	LED indicators (from top to bottom)

Position Front Panel	Position Module Bottom	LED	Status	Status description
	ID1	D25	See Table 5	Solid Yellow – ID1 selection is switched on
	ID2	D24	See Table 5	Solid Yellow – ID2 selection is switched on
	INITDONE	D6	FPGA Initialisation	Solid yellow – FPGA busy initialising OFF – FPGA Initialisation complete
	FPGA USR2	D34	FPGA User LED	Functionality is programmable and determined by user. No Default state
	SOC L0	D19	Processor PCIe link	Solid Yellow – Lane 0 link indicator at Gen2 speed between Processor and PCIe SW Flashing Yellow - Lane 0 link indicator at Gen1 speed between Processor and PCIe SW
	FPGA L11	D21	FPGA PCle link	Solid Yellow – Lane 0 link indicator at Gen2 speed between FPGA and PCIe SW Flashing Yellow - Lane 0 link indicator at Gen1 speed between Processor and PCIe SW
	DP1 L4	D20	DP01 backplane PCle link	Solid Yellow – Lane 0 link indicator at Gen2 speed between DP01 and PCIe SW Flashing Yellow - Lane 0 link indicator at Gen1 speed between DP01 and PCIe SW
	DP2 L12	D22	DP02backplane PCle link	Solid Yellow – Lane 0 link indicator at Gen2 speed between DP02 and PCIe SW Flashing Yellow - Lane 0 link indicator at Gen1 speed between DP02 and PCIe SW

6.3 VF370 Software

This section describes aspects related to software development on the VF370.

6.3.1 Processor PCIe mode

The Processor is always the root complex of the PCIe bus. It is possible to connect two VF370 modules through the backplane by enabling the non-transparent PCIe bridge (NTB) for DP01 or DP02. This setup is configurable in BIOS.

6.3.2 M_USB serial ports and M_UART functionality

Th VF370 provides two maintenance interfaces namely M_USB and M_UART. Both interfaces are accessible from the VR307 RTM.

Plug a USB cable into the mini USB connector of the VR307 to access the M_USB serial ports. The M_UART interface uses 3.3V UART logic signals and should be connected through a compatible USB to UART converter. Table 8 provides details for the M_UART pins.

When connected to the M_USB interface, two COM ports are enumerated on the PC/laptop. The lowest number COM port is always the Processor maintenance interface and the higher number is the BM maintenance interface. These ports are enumerated even if VF370 module is not powered.

6.3.3 Ethernet connection

The IP address of the module can be determined through the M_UART or M_USB ports. Open Hyper Terminal or PuTTY and connect to the serial port using the following settings - 115200 baud, 8N1 with no flow control. When powering the VF370 while connected to PuTTY, the Linux booting information or BM start up and service routine information should be displayed in the terminal window depending on the COM port connection.

Type ifconfig; the VF370 IP address should be displayed if connected to a DHCP server.

/ # ifconf	Eig						
eth0	Link encap:Ethernet HWaddr 00:17:EA:D4:A1:15						
	inet addr:172.17.7.58 Bcast:172.17.255.255 Mask:255.255.0.0						
	UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1						
	RX packets:105 errors:0 dropped:0 overruns:0 frame:0						
	TX packets:18 errors:0 dropped:0 overruns:0 carrier:0						
	collisions:0 txqueuelen:1000						
RX bytes:11033 (10.7 KiB) TX bytes:5808 (5.6 KiB)							
	Interrupt:48						
10	Link encap:Local Loopback						
	inet addr:127.0.0.1 Mask:255.0.0.0						
	UP LOOPBACK RUNNING MTU:16436 Metric:1						
	RX packets:0 errors:0 dropped:0 overruns:0 frame:0						
	TX packets:0 errors:0 dropped:0 overruns:0 carrier:0						
	collisions:0 txqueuelen:0						
	RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)						

Figure 18: **ifconfig** terminal window

Connect an Ethernet cable into SFP transceiver module or RJ45 on the **VR307**, SSH to the VF370 and login as root. The terminal should now show the Linux root directory.

6.3.4 Test API application example application

The application can be used to verify the VF370 API functionality and extract health information such as voltages, current consumption and temperatures.

After logging into Linux (root with password r00t), type "test-api" to display the following menu:

To view health information as an example, type "test-api -H". This displays all external and internal voltages, temperatures and currents as shown below.

# 0:	High voltage power input 1 voltage specifed in UITA 65 =	12098
# 1:	: High voltage power input 2 voltage specifed differently for 30 or 60 in VITA 65 =	3323
# 2:	Low voltage power input 3 voltage specifed in VITA 65 =	5065
# 3:	SSD supply voltage =	1205
# 4:	FMC adjustable voltage level power from the carrier to the IO mezzanine module =	2512
# 5:	Pre-driver supply voltage_for the_FMC_I/O bank of the_FPGA =	2518
# 6:	FPGA and PCIe Switch supply voltage =	2510
# 7:	1200 auxiliary power_supply voltage =	0
# 8:	Soc 303 rail voltage =	3317
# 9:	SoC 108 rail voltage =	1811
#10:	SoC core graphics ISP supply voltage =	893
#11	Soc 1035 rall voltage for DDR =	1355
#12	FFGH DDK supply voltage =	1504
#13	FPGH transceiver supply voltage =	1107
#14:	File Switch core supply voltage =	1007
#12:	High voltage power input 2 current specified differently for 30 or 60 in VIIH 65 =	1242
#19.	Low voltage power input 3 current specified in virk 65 -	207
#10-	But current. 303 auxiliary supply current -	374
#10-	PMIC switching regulator b current -	240
#170-	PMIC switching regulator 1 current =	272
#20.	PMIC switching regulator 2 current =	272
#21.	PMIC switching regulator 6 current =	276
#23	lloltage regulator A Buck outwent =	220
#24	loltage regulator A Buck output 5 current =	80
#25:	Unitage regulator A Buck output 2 current =	120
#26:	Voltage regulator A Buck output 3 current =	Й
#27:	Voltage regulator B Buck output 0 current =	20
#28:	Voltage regulator B Buck output 1 current =	340
#29:	Voltage regulator B Buck output 2 current =	1420
#30:	Voltage regulator B Buck output 3 current =	300
#31:	SoC DDR temperature =	28000
#32:	PCIe switch temperature =	41000
#33:	FPGA temperature =	26000
#34:	UF370 temperature =	25000
#35:	FPGA core_supply temperature =	26000
#36:	FMC site temperature =	29000
#37:	BM die temperature =	30000
#38:	PMIC die temperature =	28000
#39 :	SPD temperature =	56513
#40:	SoC core temperature =	32000
#41:	PMIC recorded cause of previous shutdown/reset =	ы N
SPD	Temperature within range (-20000 < 57025 < 850000)	
200	Temperature within Fange (-20000 < 35000 < 850000)	
120	Within Pange (1500 (12103 (1250))	
303	WILTIN Pange (3200 (3323 (3400)	

6.4 VF370 Firmware

Refer to [2] for more information.

6.4.1 Arrow USB-Blaster

Switch the DIP Switch-3 on the VR307 as shown in Figure 12.

Ensure the Arrow blaster driver provided is installed before plugging a USB cable into the mini USB connector (J6) on the VR307. Refer to 3.7.1 for detail.

Run the Quartus II Programmer, click on "Hardware Setup" and select the available Arrow USB Blaster.

🚢 Hardware S	etup No Hard	ware Mode: JTAG	•	Progress:
Hardware S	File	Mare Mode: JTAG background programming when available background programming when available W Hardware Setup D Hardware Settings JTAG Settings Select a programming hardware setup to use when programming devices. This hardware setup applies only to the current programmer window. Currently selected hardware: No Hardware Available hardware items Hardware Hardware Karrow-USB-Blaster Local USB0	Add Hardware	Progress
			Close	

Figure 20: Arrow USB Blaster setup

6.4.2 Configuring the FPGA through JTAG

To configure the FPGA (volatile), click on "Auto Detect" and select the relevant FPGA device, i.e. 5CGXFC7D6 for the standard VF370. The FPGA is now listed. Right click on the FPGA in the list, select "Change File" and browse to the .SOF file to configure the FPGA with. Tick the "Program/Configure" box and press "Start". The VF370 FPGA will now be configured with the selected .SOF file.

The FPGA configuration is volatile and will be lost after a power cycle.

6.4.3 Programming the FPGA configuration flash through JTAG

To program the FPGA configuration flash, a .JIC file first need to be created from the .SOF file.

In Quartus II or the Quartus II Programming, go "File => Convert Programming Files"

Set Programming File Type to	=> .JIC
Set Configuration Device to	=> EPCQ256
Set Mode to	=> Active Serial

Select Flash Loader and click on Add Device, select the Cyclone V Device family and the 5CGXFC7D6 Device name (standard VF370).

Select SOF Data and then Add File to add the SOF file created in Quartus.

Select the added SOF file, click on Properties and tick (enable) the Compression box, then press OK

Click Generate to create the .JIC file

Add the generated JIC file to the Quartus II Programmer and program the FPGA.

Power cycle the VF370 and the FPGA will be configured with the programmed SOF data.

OPERATING GUIDE

📓 Convert Programming File — 🗆 🗙					\times			
File Tools Window	e Tools Window Search altera.com						9	
Specify the input files to co You can also import input future use. Conversion setup files	onvert and the type of file information from c	programming file to ther files and save t) generate. he conversion s	setup informatio	on created her	e for		^
Open (Open Conversion Setup Data Save Conversion Setup							
Output programming file								
Programming file type:	JTAG Indirect Configu	ration File (.jic)					•	
Options/Boot info	Configuration device:	EPCQ256	• M	1ode:	Active Serial		•	
File name:	ile name: C:/DEV/PRJ/Parsec/VPX/VF370/FW/VF370_FPGA/qis/vf370_fpga_top/output_files/vf370_fpga.jic							
Advanced	Advanced Remote/Local update difference file: NONE							
[Create Memory Map File (Generate vf370_fpga.map)							
[Create CvP files (Generate vf370_fpga.periph.jic and vf370_fpga.core.rbf)							
l	Create config data RPD (Generate vf370_fpga_auto.rpd)							
Input files to convert								
File/Data area	Properties	tart Addres				Add	l Hex Data	
✓ Flash Loader 5CGXEC7D6						Add	l Sof Page	
✓ SOF Data	Page_0	<auto></auto>				A	dd File	
vf370_fpga_top.so	vf370_fpga_top.sof 5CGXFC7D6F27							
							Un	~

Figure 21: FPGA programming via JTAG

This page is intentionally left blank

7 BIOS

This chapter describes the VF370 BIOS settings.

7.1 BIOS settings

Through the Maintenance USB port, the BIOS settings can be accessed by pressing "F2", while the VF370 is starting up. Connect PuTTY or Hyper Terminal to the Processor Maintenance USB port as described in section 6.3.3. The BIOS menu will now be displayed:

UF370 F1 PLATFORM Intel(R) Atom(TM) Pr ETUF370C.X64.0001.D0	rocessor E3930 @ 1.30GHz 03.1907261032	0.70 GHz 4096 MB RAM
Select Language Device Manager Boot Manager Boot Maintenance M Continue Reset	<standard english=""></standard>	This selection will take you to the Device Manager
=Move Highlight	<enter>=Select Entry</enter>	

VF370 Configuration settings are located under Device Manager. This is where settings for PCIe, VF370 IO's, Ethernet settings and VPX related settings are located:

	VF370 Settings	
Settings UEX PCIe Ethernet UF370 IO Optimizations Information Board Information Health Monitor PBIT and POST Reset to Defaults		VPX Settings
Save Changes and Exit Discard Changes and Exit		
=Move Highlight	<enter>=Select Entry</enter>	Esc=Exit

Default settings are shown in **bold**.

Table 15: VPX BIOS settings

Setting	Options	Description
System Controller	nSYS_CON	The System controller state corresponds to the VPX
		signal
SYSRESET Sig	nal Off	SYSRESET will never be driven
Output	On	SYSRESET will always be driven
	System	SYSRESET is only driven when board is System
	Controller	Controller
SYSRESET Sig	nal Slave	SYSRESET is input only when not System Controller
Input	On	SYSRESET is always input

Setting	Options	Description	
SYSRESET Signal	Delay in ms	Time to wait after SYSRESET de-asserted	
Delay	Default 0ms		
PCI Enumeration	Delay in ms	Time to wait before enumerating PCI Bus	
Delay	Default 0ms		
VPX REF_CLK	Off	REF_CLK is always off	
	System Controller	REF_CLK is driven only when board is System	
		Controller	
Maskable Reset	On/ Off	If On, the maskable reset input signal generates a warm	
Input		reset to the VF370	
VAdj Selection	BIOS Selection	VaAdj Voltage is set through BIOS setting	
	FMC Selection	VAdj voltage is set through FMC EEPROM	
VAdj Voltage	1.2V,1.25V, 1.35V,	VAdj Voltage value	
_	1.5V, 1.8V, 2.5V ,		
	3.0V or 3.3V		

Table 16: PCIe Settings

Setting	Options	Description
Backplane links DP01	1 x4 ; 8 x1	PCIe Lane setup configuration for DP01
Backplane links DP02	1 x4 ; 4 x1	PCIe Lane setup configuration for DP01
MAX Link speeds	5.0Gbps ; 2.5 Gbps	Configure link speeds for Processor to PCIe SW, DP01 and DP02
Backplane link for NTB	DP01 ; DP02	Select backplane link to configure as Non-Transparent Bridge

Table 17: Ethernet configuration

Setting	Options		Description
CPUT01 Interface	1000BaseBX,		Select interface for CPUTP01
	1000BaseKX o	r	
	external PHY		
CPUT01 Autoneg	On/ Off		Switch auto negotiation on or off for CPUTP01
CPUT02 Interface	1000BaseBX,		Select interface for CPUTP02
	1000BaseKX o	r	
	external PHY		
CPUT02Autoneg	On /Off		Switch auto negotiation on or off for CPUTP02

Table 18: I/O Settings

Setting	Options	Description
UART Mode	RS422 /RS485	Selects between external RS422 or RS485 interface
Watchdog	Enable/ Disable	Enables or disables the Processor watchdog
GPIO [4:0]	Output High	Selecting the open-drain Output High (tri-stated), pulls
	(Tri-stated) or	the output high and allows external devices to drive the
	Output Low	I/O low.
		Selecting Output Low, drives the open-drain IO low and
		cannot be driven high by external devices.