Sundance Multiprocessor Technology Limited

Module Description:	PC/104 OneBank Dual-DSP + FPGA w. FMC Module
Module Number:	SMT6657
Current Issue Number:	1.4
Original Issue Date:	29 th November 2015
Original Author:	S E Carpenter

PCIe/104[™] OneBank Dual TI TMS320C6657 + Kintex-7 KU35 + VITA57.1 FMC Module

Design Description

Part #: SMT 6657

Sundance Multiprocessor Technology Ltd, Chiltern House, Waterside, Chesham, Bucks. HP5 1PS. This document is the property of Sundance and may not be copied nor communicated to a third party without prior written permission. © Sundance Multiprocessor Technology Limited 2016

Certificate Number FM55022

Issue 1.4

Revision History

Issue	Changes Made	Date	Initials
0.1	First Sundance unofficial draft.	21SEP15	SEC
0.2	Additional edits	22SEP15	FC
0.3	Added 8 x MGT and 8 x FPGA I/O to the down connector, 1 x MGT to FMC connector, SMBUS to I2C BUS Router. Rerouted DSPA SPI port to FMC through DSP FPGA. Change DSP power sequence to tabular state machine.	22SEP15	SEC
0.4	Change to 4 x MGT to the down connector, 8 MGT to the FMC connector	23SEP15	SEC
1.0	First release.	25SEP15	SEC
1.1	Revised FPGA pin allocation, added -40°C to +100°C contact Sundance, replaced pcie/104 reset to fpga with reset from cpld, updated block diagram.	230CT15	SEC
1.2	Corrected FPGA pin allocation table (FMC) Watchdog moved from CPLD to FPGA to allow programming. Dedicated watchdog signal from FPGA to CPLD added. GPIO8 changed from watchdog to FPGA_PROGRAM_B configuration control. CPLD STATUS_DATA & STATUS_CLOCK replace DIPSWDAT and DIPSWCLK, and data includes FPGA configuration status. Added I2C bus address map.	21DEC15	SEC
1.3	Moved SMBUS to I2C router inside FPGA to save pcb space. Reduced FPE general I/O from 8 to 4. Added FPE pin allocation.	14MAR16	SEC
1.4	Added PCB build information and fully routed board image.	25 th May 2016	GKP

Table of Contents

1	Introduction	5
	1.1 Main Features	5
	1.1.1 Hardware	5
	1.1.2 Standards-based external interfaces	5
	1.1.3 Interconnection between programmable devices	7
	1.1.4 TI comport compatibility	7
2	Notes	8
	2.1 Abbreviations / Definitions	8
	2.2 Sundance References	8
	2.3 Internet References	8
3	System Architecture	10
	3.1 Block Diagram	11
	3.2 FMC Data Acquisition Interface	
	3.3 PCIe/104 Interface	12
	3.4 FPGA Interfaces	
	3.4.1 FPGA POWER	
	3.4.2 FPGA EMIF16	
	3.4.3 FPGA SRIO	
	3.4.4 FPGA UART	
	3.4.5 FPGA DSP GPIO	
	3.4.6 FPGA PCIe	
	3.4.7 FPGA MGT to Carrier Board	
	3.4.8 FPGA General I/O to Carrier Board	
	3.4.9 FPGA PWRGOOD & ALERT	
	3.4.10FPGA I2C	
	3.4.11FPGA SPI	
	3.4.12FPGA I/O LVDS	
	3.4.13FPGA I/O LEDS.	
	3.4.14FPGA I/O LVTTL	
	3.4.15FPGA I/O & FMC JTAG	
	3.4.16FPGA LOCAL LEDS	
	3.4.17FPGA FMC LVDS CLOCKS	
	3.4.18FPGA FMC DATA I/O LA00-33	
	3.4.19FPGA FMC SPI 3.4.20FPGA FMC INTERRUPTS	
	3.4.21FPGA FMC MGT 3.5 DSP Interfaces	
	3.5 DSP Interfaces	
	3.5.2 DSP JTAG	
	3.5.3 DSP EMIF16	
	3.5.4 DSP UART	
	J.J.F DOI UANI	

3.5.5 DSP GPIO	32
3.5.6 DSP RESET	33
3.5.7 DSP POWER	33
3.5.8 DSP SRIO	35
3.5.9 DSP HYPERLINK	35
3.5.10DSP PCIe	35
3.5.11DSP EMIF32 & DDR3 memory	36
3.5.12DSP I2C	37
3.6 I2C Temperature Sensor	38
3.7 I2C Supply Volts ADC	39
3.8 CPLD	40
3.9 DSP Booting	43
3.9.1 DIP Switches	44
3.10 Flash Memories	
3.10.1256KByte I ² C EEPROM	45
3.10.2256MByte Parallel NOR Flash	45
3.11 Clock System	47
3.12 Power Supplies	51
3.13 I/O expansion connector	55
3.14 SRIO expansion connector	57
4 PCB Layout	59
4.1 Heat Sinks	59
4.2 Component Placement	59
4.3 PCB Construction	61
4.4 PCB Layout	64
4.4.1 Main Board	
4.4.2 Front Panel Interface Board	65
5 Physical Properties	66
6 Verification, Review & Validation Procedures	67
7 Safety	67
8 EMC Statement of Compliance	67
9 Ordering Information	67

1 Introduction

This document is the design description of a dual DSP+FPGA PCIe/104 module, which describes the hardware design in detail. Where possible specific devices are identified for use in the design, along with how they are connected.

This document provides a set of design requirements, which are used by the PCB designer, and for PCB testing.

The SMT6657 dual-DSP+FPGA module is a reliable and flexible platform for digital signal processing applications requiring high-performance integer and floating-point computation.

It is applicable to both symmetric multiprocessing applications in which the computational load is shared by the two DSPs; and asymmetric applications where one of the DSPs is responsible for hard real-time processing and the other acts as a supervisor, handling all non-deterministic communication and optionally running under control of an operating system.

1.1 Main Features

1.1.1 Hardware

This module consists of the following major hardware features:

- 1) PCIe/104[™] OneBank plug-able module format
- 2) Two dual-core <u>TI</u> C6657 floating-point DSPs
- 3) Xilinx <u>Kintex-7 Ultra Scale</u> series FPGA
- 4) Serial RapidIO and Hyperlink connectivity between DSPs
- 5) Accepts one <u>FMC-LPC[™]</u> Mezzanine Card data acquisition add-on module
- 6) Additional stack-down SRIO connector to SMT-Carrier-GSI
- 7) Front panel I/O connector carrying gigabit Ethernet and flexible FPGA I/O

1.1.2 Standards-based external interfaces

The SMT-DSP-GSI module benefits from the incorporation of three key interface standards, each one the leading standard in its area of the embedded systems field:

- 1) PCIe/104[™] provides tightly integrated high-speed connectivity with PC hosts and also defines a compact and rugged module format.
- 2) FMC provides an FPGA-oriented data acquisition card interface that is particularly well suited to analogue conversion applications. Due to the flexibility of FPGA I/O, the function of its 68 pins (Low pin count FMC; or 160 pins for the High Pin Count version) can optimised to the needs of the FMC add-on module.
- 3) Serial RapidIO is a standard designed to address the need for inter-module communication in high bandwidth embedded systems such as 4G wireless base stations, and has become a standard peripheral in high-end TI DSPs.

1.1.3 Interconnection between programmable devices

Carrier to DSPs

- One 500MByte/s PCIe Gen2 lane to each DSP, for memory-mapped host communication
- One 500MByte/s PCIe Gen2 lane to the FPGA
- Two 500MByte/s SRIO lanes to each DSP, for telegram-oriented communication between DSP modules
- Four 500MByte/s PCIe Gen2 lanes to the FPGA

DSP to DSP

- 4GByte/s TI Hyperlink for memory-sharing between DSPs
- One 500MByte/s SRIO lane between DSPs, for telegram-oriented communication between DSPs

DSP to FPGA

- Each DSP has its own 100MByte/s 16-bit memory bus interface to the FPGA (also configurable as a Universal Parallel Port)
- Each DSP has one 500MByte/s SRIO lane to the FPGA
- All DSP GPIO is routed to the FPGA
- A full duplex 6MByte/s SPI communications channel for control and diagnostics

FPGA to FMC

- 34 user-definable I/O pairs, configurable to the interfacing needs of the FMC Data Acquisition card: ADC & DAC data, SPI bus, Interrupt
- Eight MGT 500MByte/s transceiver data pair
- Two clock signals

System Management Bus

• All I²C-capable devices including both DSPs, are connected to a single I²C bus, which extends to the I²C pins of the FMC connector and the SMbus pins of the PCIe/104[™] stack-down connector, through an SMBUS router within the FPGA.

1.1.4 TI comport compatibility

The SMT6657 is supplied with firmware that permits <u>TMS320C40</u> comports to be implemented on its external I/O and/or FMC daughterboard interfaces. As each DSP has a memory bus connected to the FPGA, this functionality is exposed to the DSP software via a memory-mapped interface that is very similar to the original TI hardware implementation of comports.

2 Notes

Several part numbers are described in the text. These are possible part numbers, and alternative devices may be designed in at a later date.

2.1	Abbreviations / Definitions
ADC	Analog to Digital Converter.
DAC	Digital to Analogue Converter
DDR & DDR3	Dual Data Rate. An interface mechanism where data is transferred on both rising and falling clock edges. DDR3 memory is lower power and higher performance than its predecessor, DDR2.
DRAM	Dynamic RAM.
FPGA	Field Programmable Gate Array.
GPIO	General Purpose Input Output.
I ² C	Inter-integrated Circuit. A two wire low speed serial interface.
MAC	Media Access Control.
Magnetics	Commonly used to refer to the inductors and transformers within the Ethernet signalling to the RJ45 connector.
PHY	Commonly used to refer to the device that interfaces to the physical layer.
RAM	Random Access Memory.
SEIC	Sundance External Interface Connector, a module-specific breakout board for external I/O.
SPI	Serial Peripheral Interface. A high speed serial interface.
SRIO	Serial RapidIO (also known as Serial RocketIO). A multi-gigabit serial interface for peer-to-peer communication. Provides both message-passing and read/write transactions.
EMIF32	High speed synchronous 32 bit bus to the DDR3 SDRAM
EMIF16	Medium speed asynchronous 16 bit bus to the FPGA and flash ROM
SGMII	1G Ethernet interfaces to a dual 1G Ethernet PHY
PCIE	Dual lane gen 2
JTAG	Test and development connection to external emulation system
CLOCKS	Multiple clocks to drive different parts of the DSP & FPGA
UART	Standard asynchronous serial communications
POWER	Multiple power supplies for the core and the I/O
MGT	Multi Gigabit Transceiver
2.2	Sundance References
[1]	SMT-DSP-GSI (qcf51) v1_7.pdf
[2]	SMT-FMC-GSI (qcf51) v1_5.pdf
[3]	SMT-IO-GSI (qcf51) v1_4.pdf
[4]	SMT-MBRD-GSI (qcf51) v1_5.pdf
2.3	Internet References
2.5	Internet References
[5]	http://www.pc104.org/history.php
[6]	http://shop.vita.com/ANSI-VITA-571-2008-R2010-FPGA-Mezzanine-Card-FMC-
r	Standard-AV571.htm
[7]	http://www.ti.com/lsds/ti/dsp/keystone/overview.page
[8]	http://www.ti.com/lit/ug/sprugw1b/sprugw1b.pdf

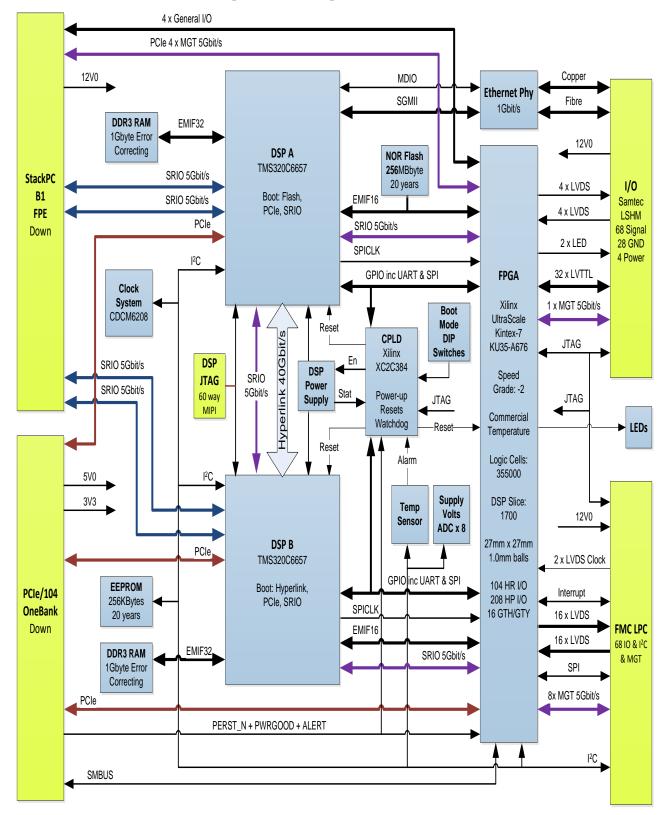
[9]	http://www.xilinx.com/support/documentation/data_sheets/ds095.pdf
[10]	http://www.ti.com/product/tms320c6657
[11]	http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
[12]	http://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sh eet.pdf
[13]	http://www.ti.com/tool/XDS560
[14]	http://www.xilinx.com/support/documentation/data_sheets/ds593.pdf
[15]	http://www.xilinx.com/support/documentation/data_sheets/ds892-kintex-ultrascale- data-sheet.pdf
[16]	http://www.xilinx.com/products/technology/power/xpe.html
[17]	http://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale- configuration.pdf
[18]	http://www.ti.com/litv/pdf/spru655i
[19]	http://en.stackpc.org/specs.html

3 System Architecture

The DSP system consists of a PCIe/104 format PCB, with major components: A pair of 1.25GHz Texas Instruments DSPs part number: TMS320C6657CZH25 A Xilinx Kintex7 UltraScale FPGA part number: XCKU035-1FBVA676C.

These and all other components used are specified for operation in a laboratory environment over the temperature range of 0° C to $+85^{\circ}$ C, and comply with ROHS requirements.

For operating requirements over the range of -40°C to +100°C, please contact Sundance.


The DSP PCB has thick copper power plane internal layers for high thermal and electrical conductivity. A solid aluminum heat sink provides further conduction cooling and rigidity and EMI shielding.

The system design around each DSP is largely symmetrical, apart from the boot procedure and non-deterministic interfaces.

DSP A is the master and boots first from the EMIF16 NOR FLASH PROM. Code running on DSP A is then responsible for booting DSP B and configuring the Kintex-7 FPGA.

With its large flash memory and gigabit Ethernet connection, DSP A is most suited to run a Real Time Operating System, leaving DSP B free to perform real time signal processing which is both deterministic and very low latency.

Below is a diagram showing the system architecture:

Figure 1 Block diagram of SMT6657

3.1

3.2 FMC Data Acquisition Interface

The FMC is the "Low Pin Count" variant, which provides the following signals:

- 34 flexibly configured I/O pairs, which in the standard firmware are configured as
 - 8 high speed LVDS double data rate inputs (for ADC sample data)
 - 16 high speed LVDS outputs (for DAC sample data)
 - SPI bus from the DSP FPGA
 - Interrupt / DMA request to the DSP FPGA
- 2 LVDS data clocks
- I²C for peripheral configuration and status monitoring
- FPGA JTAG permitting debugging of the data acquisition module firmware
- Eight MGT 500MByte/s serial communications lanes

3.3 PCIe/104 Interface

The PCIe/104 OneBank connector provides power, global Reset, PCI Express connections to the host, and I²C.

The first three PCIe lanes on the connector are routed to the two DSPs and the Kintex-7 FPGA. The SMT6657 board thus provides three separate PCIe x1 ports.

Each DSP has a single PCIe GEN2 port operating at up to 5G Baud per lane, which can be configured at reset as either a "Root Complex" or "End Point" by the CPLD.

A PCI Express block can be instantiated in the FPGA to provide a single PCIe Gen2 port operating as "Root Complex" or "End Point". Only one lane is routed to the PCIe/104 OneBank connector.

"End Point" would be used to communicate with a standard Host, and "Root Complex" would be used to communicate with a peripheral that only implements an "End Point". The Root Complex is usually provided by a host PC, and therefore a typical configuration will have both DSPs and the FPGA configured as End Points.

The global I²C bus is connected to the PCIe/104 connector signals SMB_DAT and SMB_CLK through a SMBUS to I2C BUS Router within the FPGA. This allows the DSPs to read the carrier board status, and to allow a service processor on the carrier board to read the temperature of the SMT-DSP-GSI board. The Router is required to implement the SMBUS "Address Resolution Protocol" (ARP). This allows I2C device with the same I2C address located on different boards on the PCIe/104 connector stack to communicate with the host board without address conflicts.

The PCIe/104 connector signal SMB_ALERT is fed to both the FPGA and the CPLD. It is used by the CPLD to assert a DSPA interrupt using a DSPA GPIO signal.

The PCIe/104 connector signal PWRGOOD is fed to both the FPGA and the CPLD. The CPLD uses it to control the power up and down sequencing. In the event of

system power failure, the mains power supply negates PWRGOOD and the CPLD powers down the DSPs with the correct sequence before total power failure.

The PCIe/104 connector signal PE_RST_N is fed to the CPLD only. This is the host system reset, and the CPLD uses it to reset the DSPs and other devices without power sequencing.

The PCIe/104 connector signal PSON_N is fed to both the FPGA and the CPLD. This signal is used by the system host to turn on the primary power supply. Use by SMT-6657 is reserved.

There is no PCIe/104 UP connector because the one bank connector does not provide enough power to supply a second DSP board. This also means there are no automatic link shifting switches required.

3.4 FPGA Interfaces

The FPGA is Xilinx Kintex7 UltraScale FPGA part number: XCKU035-1FBVA676C. The package is designated FBVA676 which is a 27 by 27 ball grid array with 1mm pitch. This device has 312 I/O pins and 16 MGT / GTH gigabit serial ports.

This FPGA primarily provides serial data formatting and LVDS I/O through the FMC daughterboard connector, for interfacing to the data acquisition board.

The FPGA has sufficient processing power to perform complex pre- and postprocessing of sample streams, allowing the processing of raw data to be offloaded from the DSPs:

- 1) > 55000 Xilinx 7 logic slices (equivalent to at least 200000 Xilinx 2 slices)
- 2) 1700 DSP slices
- 3) > 2MB Block RAM

The FPGA implements communication functions appropriate to the installed I/O expansion board. The default use is:

- 4 (four) Optical inputs
- 4 (four) Optical outputs
- 4 (four) TTL inputs
- 4 (four) TTL outputs
- 2 (two) TI DSP Links
- 2 (two) Health LEDs

The board firmware includes two TI comport bridging modules that provide a way for user firmware to send and receive data using TMS320C40 comport signalling conventions. This provides backwards compatibility for users with legacy systems.

The EMIF16 bus timing determines the maximum I/O throughput for each DSP to the FPGA. A DSP running at 1.25GHz clocks the EMIF16 at 208.3MHz, and consecutive reads or writes can be completed in 4 clocks, or 52.085MHz. This makes the EMIF16 peak transfer speed to or from the FPGA, 104.1M Bytes/sec.

For applications that require higher bandwidth between FPGA and DSP, the DSP Universal Parallel Port (UPP) peripheral can be enabled instead of EMIF16. Although UPP has a higher bandwidth (up to 240MB/s) it is DMA driven and has a minimum transfer size of 64 bytes, resulting in a higher latency than EMIF16. UPP is therefore better suited to data-streaming applications than ones which require low latency.

The FPGA has 6 I/O banks each with 52 I/O pins making a total of 312. Each bank can have up to 24 differential pairs. There is also a dedicated configuration bank (0), which can not be used for normal I/O. Each I/O bank can be connected for either 3V3 or 1V8 I/O. It is not possible to mix I/O levels on the same bank. LVDS outputs can only be allocated to banks with 1V8 supply. LVDS inputs can be allocated to 3V3 or 1V8 banks.

The following table lists all FPGA I/O pins including clocks but excluding MGTs. Each pin type is associated with either 3V3 or 1V8 I/O levels. This allocation ensures that all the 3V3 I/O fit exactly with a single bank dedicated to 3V3 I/O and the 5 other banks are all 1V8 I/O. Note that ALL DSP signals are 1V8 only.

The following table gives an example bank allocation of the I/O data and clock (non MGT) pins of the FPGA:

Inter face	Signal	Standard	FP GA I/O	B44 52x 1V8 24 pairs	B45 52x 1V8 24 pairs	B46 52x 3V3 24 pairs	B64 52x 1V8 24 pairs	B65 52x 1V8 24 pairs	B66 52x 1V8 24 pairs	Comment
DSPA _EMIF 16	D0-15	LVCMOS 18	I/O					16		Must be B65 for select MAP config
DSPA _EMIF 16	A0-23	LVCMOS 18	IN					24		
DSPA _EMIF 16	CE0-3	LVCMOS 18	IN					4		
DSPA _EMIF 16	Controls: R/W, OE, WE, BE0-1	LVCMOS 18	IN					5		
DSPA _EMIF 16	WAIT0-1	LVCMOS 18	OU T					2		
DSPA _EMIF 16	SYSCLKO UT	LVCMOS 18	IN					1		1.25GHz/6= 208.3MHz
DSPB _EMIF 16	D0-15	LVCMOS 18	I/O						16	
DSPB _EMIF 16	A0-23	LVCMOS 18	IN						24	
DSPB _EMIF 16	CE0-3	LVCMOS 18	IN						4	
DSPB _EMIF 16	Controls: R/W, OE, WE, BE0-1	LVCMOS 18	IN						5	
DSPB _EMIF 16	WAIT0-1	LVCMOS 18	OU T						2	
DSPB _EMIF 16	SYSCLKO UT	LVCMOS 18	IN						1	1.25GHz/6= 208.3MHz
DSPA _GPIO	GPIO00-31	LVCMOS 18	I/O				32			Includes SPI (except SPICLK) and UARTS
DSPA _SPIC _LK	SPICLK	LVCMOS 18	IN				1			
DSPB _GPIO	GPIO00-31	LVCMOS 18	I/O	5	8		19			Includes SPI (except SPICLK) and UARTS

DSPB _SPIC					A				
LK	SPICLK	LVCMOS 18	IN		1				
FMC	CLK0_M2C	LVDS	IN		2			Clock FMC module to carrier	
FMC	CLK0_C2M	LVDS	OU T	2				Clock FMC carrier to module	
FMC	LA00_CC	LVDS	IN		2			Clock Source Sync module to carrier	•
FMC	LA01_CC	LVDS	OU T	2				Clock Source Sync carrier module	
FMC	ADC_M2C	LVDS	IN		16			ADC 8 bit double data rate	
FMC	FRAME_M 2C	LVDS	IN		2			ADC Frame data valid bit	
FMC	DAC_C2M	LVDS	OU T	32				DAC 16 bit data	
FMC	FRAME_C 2M	LVDS	OU T	2				DAC Frame data valid bit	
FMC	SPICLK, SPICS_C2 M	LVDS	OU T	4					
FMC	SPID_C2M	LVDS	OU T	2				External discrete LVD to LVCMOS	
FMC	SPID_M2C	LVDS	IN	2				External discrete LVCMOS18 TO LVDS	
FMC	Interrupt_M 2C	LVDS	IN		2				
FMC	(reserved)	LVDS	I/O		2			34 signal pai on FMC, 1 reserved	irs
FMC	Clock: M2C, C2M	LVDS	IN	4				Data clocks	
FMC	PG_C2M	LVTTL	OU T			1		Power good	
I2C	SDA	LVTTL	I/O			1			
I2C	SCL	LVTTL	IN			1			
CPLD	RESET_N	LVCMOS 18	IN		1				
PCIe/1 04	PWRGOO D, ALERT	LVTTL	IN			2			
LED	LED0	LVTTL	OU T			1			
I/O_LS HM	OPTICALIN 0-3	LVDS	IN		8				
I/O_LS HM	OPTICALO UT0-3	LVDS	OU T		8				
I/O_LS HM	LEDS	LVTTL	OU T			2			

I/O_LS HM	LVTTL_OU T0-3	LVTTL	OU T			4				
I/O_LS HM	LVTTL_IN0 -3	LVTTL	IN			4				
I/O_LS HM	DSPLINK0	LVTTL	I/O			12				
I/O_LS HM	DSPLINK1	LVTTL	I/O			12				
I/O_LS HM	IOENABLE	LVTTL	OU T			1				
STAC KPC	FGPIO0-7	LVTTL	OU T			8				
SYNT HESIS ER	STATUS0- 1	LVCMOS 18	IN	1						PLL_UNLOCK
CLOC K	CLK200MH Z	LVDS	IN			2				
CLOC K	CLK25M	LVTTL	IN			1				
TOTA LS				52	52	52	52	52	52	312

Notes:

This table is one solution to allocating pins to FPGA banks, and is provided to demonstrate that solutions exist. There are other solutions with equal functionality which may be adopted during detailed design, if required due to other constraints. This table only shows the allocation of general I/O pins, it does not show any dedicated pins such as the FPGA configuration interface and Bank 0. Xilinx do not permit allocation of all I/O pins in a bank to differential pairs. 5 Banks are supplied with 1.8V, and 1 Bank is supplied with 3.3V. The postfix "_N" denotes an active low signal

The following FPGA interface descriptions describe all the FPGA interfaces:

3.4.1 FPGA POWER

The supply voltages and tolerances are specified in ref [15] Table 2: Recommended Operating Conditions. The idle no load currents are given in ref [15] Table 6: Typical quiescent Supply Current. The following table estimates FPGA power consumption under 2 conditions: Typical idle no load and maximum power. The maximum power estimates are made with Xilinx Power Estimator ref [16] set to "quick estimate" and process "maximum".

Supply Volts Typical Typical Max Max

		Idle	Idle	Amps	Watts
		Amps	Watts		
Vccint	0.95	0.907	0.862	4.237	4.025
Vccint_io	0.95	0.077	0.073	0.285	0.270
Vcco_3v3	3.30	0.001	0.003	0.302	0.996
Vcco_1V8	1.80	0.001	0.002	0.302	0.543
Vccaux	1.80	0.145	0.261	0.295	0.531
Vccaux_io	1.80	0.066	0.119	0.381	0.686
Vccbram	0.95	0.039	0.037	0.182	0.173
TOTAL	na	na	1.357	na	7.224

Note: The 3V3 I/O is only supported by High Range (HR) type pins. Both HR and High Performance (HP) type pins support 1V8 I/O.

Not all of the Vcco power will be consumed in the FPGA chip.

The maximum 0.95V current draw is 4.704A.

The maximum 1.8V current draw is 0.978A.

Control of power sequencing is required both during power up and power down, as specified in the section "Power-On/Off Power Supply Sequencing" in DS892 ref[15]. This control is provided by the CPLD which also controls the DSP power sequencing.

3.4.2 FPGA EMIF16

Each DSP is connected to the FPGA with the EMIF16 bus. This bus consists of a 16 bit bidirectional data bus, a 24 bit address bus, 11 control signals, and the clock signal SYSCLKOUT. This clock is a DSP "System Clock Output" and is the DSP core clock divided by 6, which is the same clock used to time all I/O on the EMIF16 bus. So with a core clock of 1.25GHz, this clock is 208.3MHz or 1/4.8nS.

Texas Instruments have fully specified the EMIF16 bus for asynchronous timing, however by connecting the DSP SYSCLKOUT to the FPGA, it is possible to implement synchronous data transfers. For initial development the FPGA design will implement a 4 clock random read or write, giving a peak transfer rate of 104.1Mbytes/s. During development a 3 clock random read or write will be implemented, giving a peak transfer rate of 138.8Mbytes/s.

For data transfer from DSP to FPGA it is possible to double the data rate by using the EMIF address bus to transfer data. Address signals A00-A15 can be used as an additional 16 bit write only data bus, effectively doubling the write data rate. To allow operation in this mode, address signals A16-23 are used to decode the internal FPGA address space.

The EMIF16 bus from DSPA is used during FPGA configuration to load the configuration data into the FPGA using the Xilinx "Select MAP" interface (ref[17]

"Select MAP configuration modes") , under software control. The DSP software can reconfigure the FPGA at any time.

The FPGA select MAP interface can be 8, 16 or 32 bit so the DSP EMIF16 data bus is connected for 16 bit FPGA configuration. For configuration the EMIF16 data bus must be connected with bits D0-3 on FPGA Bank 0, and D4-15 on FPGA bank 65. However Bank 0 does not support normal I/O after configuration as it is dedicated for configuration only. It is then necessary to ALSO connect EMIF16 data bus D3-0 to bank 65, so these 4 DSPA EMIF16 data bus pins are each connected to 2 FPGA pins. This also applies to the read/write signal EMIFR/W_N, the output enable signal EMIFOE_N and the write enable signal EMIFWE_N. The dedicated FPGA configuration clock is used to clock data in and out on the rising edge. To correctly generate this clock from the EMIF16 control signals, a dedicated high speed NAND gate in the CPLD is used to combine EMIFOE_N and EMIFWE_N, so that either generates a rising edge on CCLK at the start of a data transfer.

Here is a table showing connectivity between DSPA EMIF16 and the FPGA to allow configuration read write and I/O read write:

DSPA	FPGA	FPGA	Notes
EMIF16	Bank	Config	
Signal		Pin Name	
D0-3	0	D[03:00]	Configuration data bus
005	65	D[05.00]	I/O data bus
D4-15	65	D[15:04]	Configuration and I/O data bus
A0-23	65		I/O address bus
EMIFR/W_N	0	RDWR_B	Configuration read write
	65		I/O read write
EMIFCE0_N	65		I/O chip select
EMIFCE1_N	65		I/O chip select
EMIFCE2_N	65		I/O chip select
EMIFCE3_N	65	CSI_B_N	Configuration interface chip select
EMIFOE_N	0	CCLK	Configuration clock: NAND with EMIFWE_N
	65		I/O read output enable
EMIFWE_N	0	CCLK	Configuration clock: NAND with EMIFOE_N
	65		I/O write enable
EMIFBEO_N	65		I/O Byte 0 select
EMIFBE1_N	65		I/O Byte 1 select
EMIFWAIT0	65		I/O Interrupt 0, or DMA request
EMIFWAIT1	65		I/O Interrupt 1, or DMA request
SYSCLKOUT	65		I/O Clock (Core clock/6)

Note: "_N" denotes an active low signal

Note: There are 52 signals in EMIF16 + SYSCLKOUT which completely fills bank 65

There are 3 other FPGA signals used during Configuration, all are on FPGA bank 0:

PROGRAM_B is an FPGA input, which starts a new configuration when driven low. This FPGA input is driven by the CPLD.

INIT_B is a FPGA bidirectional signal which requires an external resistor pull up. This signal is driven low by the FPGA to indicate it is NOT ready to begin receiving configuration data. It can be driven low externally to force the FPGA to delay configuration. After configuration it can be driven low by the FPGA to signal a CRC error. This FPGA output is connected to the CPLD.

DONE is a FPGA bidirectional signal with an external resistor pull up. This pin is driven low by the FPGA until the configuration is complete. A red LED is attached to this signal which is illuminated when DONE is driven low. This FPGA output is connected to the CPLD.

The EMIF16 bus from DSPB completely fills another FPGA bank, which can be chosen for optimum board layout.

The normal operating FPGA data interface consists of a series of memory mapped registers and memory areas which are always available to the DSP software and the DSP DMA engines. There are 2 DSP control inputs EMIFWAIT0 and EMIFWAIT1, and a rising edge from the FPGA on either of these can cause either a DSP software interrupt, or a DSP DMA transfer.

3.4.3 FPGA SRIO

Each DSP has 4 SRIO ports, each operates at 5GBits/s, and a single SRIO port is connected from each DSP to the FPGA. All the PCB design rules relating to SRIO interconnect are followed, and because of the short distance, full speed operation is required.

3.4.4 FPGA UART

Each DSP has a dual UART port with each UART having 2 output signals and 2 input signals, making a total of 8 signals. These signals are all connected directly to the FPGA, for optional routing to external board I/O through the FPGA.

3.4.5 FPGA DSP GPIO

Each DSP has 32 GPIO pins, and all have a dual function:

GPIO	DUAL FUNCTION
00-15	BOOT CONFIGURATION
16	BOOT CONFIGURATION & TIMER
17-19	TIMER
20-27	UART
28-31	SPI

All 32 of the GPIO pins from each DSP are connected to the FPGA. The boot configuration pins are also connected to the CPLD and are driven by the CPLD during power up and DSP reset. It is essential that the FPGA does not drive any of these signals during this period, as this could interfere with the DSP booting control. During power up the FPGA will not be configured so it can not drive any of these signals. However care is required if the DSP is reset without a power up. To avoid problems the CPLD can force the FPGA PROGRA_B signal low when the DSP is reset, so the FPGA is guaranteed to be in configure mode and can not drive the DSP BOOT CONFIGURATION signals.

Note that all GPIO signals can be used as interrupts to the DSP, and a number (TBD) of these signals are used as dedicated interrupts.

The DSPA SPI signals are connected to the dedicated FPGA SPI interface.

GPIO	DSP Normal Function	CPLD/FPGA	Allocated Normal Function	Normal Description
00	IO00	CPLD	INTO_TEMP	Temperature alarm interrupt
01	IO01	CPLD	INT1_ALERT	PCIe/104 Alert interrupt
02	IO02	CPLD	INT2_PWRGOOD	PCIe/104 Powergood interrupt
03	IO03	CPLD	INT3_DSP	Interrupt from the other DSP
04	IO04	CPLD	DIPSWDAT	Serial dipswitch data
05	IO05	CPLD	DIPSWCLK	Dipswitch clock
06	IO06	CPLD	RESETDSP	Reset the other DSP
07	IO07	CPLD	DSP_INTERRUPT	Interrupt to the other DSP
08	IO08	CPLD	DSP_WATCHDOG	Watchdog software clock
09	IO09	FPGA	INT4	Interrupt / DMA 4
10	IO10	FPGA	INT5	Interrupt / DMA 5

The following table details the allocation of all GPIO signals between FPGA and CPLD after DSP reset is complete, for both DSPs:

11	IO11	FPGA	INT6	Interrupt / DMA 6
12	IO12	FPGA	INT7	Interrupt / DMA 7
13	IO13	FPGA	INT8	Interrupt / DMA 8
14	IO14	FPGA	INT9	Interrupt / DMA 9
15	IO15	FPGA	INT10	Interrupt / DMA 10
16	Timi0	FPGA	Reserved FPGA	Reserved for future use
17	Timi1	FPGA	Reserved FPGA	Reserved for future use
18	Timo0	FPGA	Reserved FPGA	Reserved for future use
19	Timo1	FPGA	Reserved FPGA	Reserved for future use
20	Uartrxd	FPGA	Uartrxd	Uart 0 receive data
21	Uarttxd	FPGA	Uarttxd	Uart 0 transmit data
22	Uartcts	FPGA	Uartcts	Uart 0 cts
23	Uartrts	FPGA	Uartrts	Uart 0 rts
24	Uartrxd1	FPGA	Uartrxd1	Uart 1 receive data
25	Uarttxd1	FPGA	Uarttxd1	Uart 1 transmit data
26	Uartcts1	FPGA	Uartcts1	Uart 1 cts
27	Uartrts1	FPGA	Uartrts1	Uart 1 rts
28	Spiscs0	FPGA	Spiscs0	SPI chip select 0
29	Spiscs1	FPGA	Spiscs1	SPI chip select 1
30	Spidin	FPGA	Spidin	SPI data in
31	Spidout	FPGA	Spidout	SPI data out

The UART pins of both DSPs are reserved for use during development. The SPI pins of DSPA are used for SPI communication to the DSP FPGA only. The SPI pins of DSPB are used for SPI communication to the DSP FPGA only.

3.4.6 FPGA PCIe

A single PCIe channel is connected from the FPGA to the PCIe/104 connector. All PCB design rules are followed and full speed operation is required. The PCIe clock is supplied by the PCIe/104 connector.

3.4.7 FPGA MGT to Carrier Board

Four MGT 500MByte/s lanes are connected from the FPGA directly to the StackPC down connector. This can be used to implement a 4 lane PCIe.

3.4.8 FPGA General I/O to Carrier Board

Eight FPGA 3.3V general I/O pins are connected from the FPGA directly to the StackPC down connector. These can be used for triggers, interrupts clocks etc.

3.4.9 FPGA PWRGOOD & ALERT

These 3V3 are signals are status inputs to the FPGA and CPLD from the PCIe/104 connector.

PWRGOOD is driven by the system power supply unit (psu) to indicate that the psu outputs and inputs are within tolerance. Since the psu input is the mains supply, this signal provides early warning of impending mains failure and allows the system to take appropriate action.

ALERT is driven by the system board as a software interrupt, routed through the FPGA.

3.4.10 FPGA I2C

Each DSP has a single I2C interface which is connected to all other I2C devices and the FPGA. This is a multi master bus which provides system management connectivity on-board and to selected off-board interfaces:

- DSP A (as bus master)
- DSP B (as bus master)
- Kintex-7 FPGA (as a peripheral and/or bus master)
- Temperature sensor
- Parameter EEPROM memory
- PCIe/104[™] motherboard connector SMBUS router (within the FPGA)
- FMC analog daughterboard connector
- Clock system generator CDCM6208
- Supply voltage monitor 8 channel ADC

As the I²C bus is inherently multi master, this allows either DSP to access any I²C peripheral.

The I2C bus has 2 signals, clock and data which can be connected to standard FPGA I/O pins, although there may be an advantage in connecting the clock signal to an FPGA clock input.

3.4.11 FPGA SPI

DSPA SPI bus is connected to the DSP FPGA. FMC SPI bus is connected to the DSP FPGA.

DSPA has 2 dedicated SPI chip selects:

SPISCS0 = FMC FPGA SPI select SPISCS1 = DSP FPGA SPI select

When DSP FPGA detects SPISCS0 active it routes the DSPA SPI communication through to the FMC SPI pins. When SPISCS1 is active the SPI communication is routed to the SPI peripheral in the DSP FPGA.

The SPI bus operates a single serial data bit channel at 55.5MBit/s (6.9Mbytes/s) and provides a medium speed communications channel to the FPGA for control and diagnostics. This provides an alternative to using the EMIF16 bus for less time critical communications.

3.4.12 FPGA I/O LVDS

There are 4 LVDS I/O outputs and 4 LVDS I/O inputs connected to the 100 way I/O expansion connector. These provide high speed serial communication with the optical interfaces on the I/O board. These optical interfaces are implemented with Avago AFBR-5972Z "Compact 650nm Transceiver with Compact Versatile-Link connector for Fast Ethernet over POF" operating with a Manchester encoded signal at 80MHz. A dedicated 200MHz clock is supplied to the FPGA to enable encoding and decoding.

3.4.13 FPGA I/O LEDS

Two 3V3 level LED outputs are connected to the I/O expansion connector to provide front panel status indicators. The LEDs are buffered on the I/O expansion board, so no significant current is passed on these FPGA signals.

3.4.14 FPGA I/O LVTTL

32 LVTTL 3V3 I/O signals provide 2 separate 12 bit DSP links, and 4 general purpose outputs and 4 general purpose inputs, through the 100 way I/O expansion connector.

3.4.15 FPGA I/O & FMC JTAG

This JTAG interface is defined by Xilinx for serial connection to the DSP FPGA, the DSP CPLD and the FMC FPGA. These 3 devices are chained together so they can all be controlled by this single JTAG interface, which is routed to the 100 way I/O expansion connector. The standard <u>Xilinx Platform Cable USB-II</u> [9] debugging interface connector is located on the I/O expansion board.

To maintain chain integrity when the FMC card is not fitted, a simple analogue switch is used to bypass the FMC connector.

3.4.16 FPGA LOCAL LEDS

One externally buffered LED, colour green, is mounted on the DSP PCB for use in development. This is controlled by a standard FPGA I/O pin, allowing direct software control.

A third LED (colour red) is mounted on the DSP PCB, and is connected to the FPGA "DONE" output, so that it is illuminated when the FPGA is not configured.

Both LEDs are located near to a PCB edge so they can easily be seen.

3.4.17 FPGA FMC LVDS CLOCKS

Two LVDS clocks are output from the FMC module. One clocks data in to the DSP FPGA and the other clocks data out of the DSP FPGA. Frequencies can be up to 250MHz. The net names are CLK0_M2C and CLK0_C2M.

3.4.18 FPGA FMC DATA I/O LA00-33

The FMC LPC interface has 34 signal pairs labelled LA00 to LA33. These are all connected to the FPGA and allocated for use with SMT-FMC311 as follows:

FMC LA	FPGA Bank	DSP FPGA IN/OUT	Signal	Description
CLK0_M2C	45 (GC)	IN		
CLK0_C2M	44 (GC)	OUT		
LA00_CC	45 (GC)	IN		

LA01_CC	44 (GC)	OUT		
LA02-17	44	OUT	16 SDATAOUT	Sample data out to DAC
LA18	44	OUT	SDOUT_FRAME	Framing and valid data out bit
LA19	44	IN	SPIDIN	SPI data in
LA20	44	OUT	SPIDOUT	SPI data out
LA21	44	OUT	SPICLK	SPI clock
LA22	44	OUT	SPICS	SPI chip select (data framing)
LA23	45	-	Reserved	Reserved
LA24-31	45	IN	8 SDATAIN	Sample data in from ADC (8 bit double data rate)
LA32	45	IN	SDIN_FRAME	Framing and valid data in bit
LA33	45	IN	INTERRUPT	Interrupt

Notes:

All 34 pairs are connected to LVDS I/O capable pins on the FPGA, so that usage for all pairs can easily be changed in the FPGA firmware. This is also required for compatibility with other 3rd party FMC boards.

FPGA Bank allocation keeps all bits of each of the following signal groups on a single bank to optimise FPGA internal layout:

DAC data and frame out

ADC data and frame in

SPI bus and controls

To transport sample data, the data is synchronous and clocked using the two LVDS FMC clocks: CLK0_M2C and CLK0_C2M.

The input and out FRAME bits are used both to identify channel 1 data, and flag valid data.

The data is always transferred in pairs, channel 1 and 2. The data is only valid when the FRAME bit is valid for channel 1.

3.4.19 FPGA FMC SPI

When SMT-FMC311 is plugged in to the FMC connector, a SPI bus is available for communication, and to configure the FMC FPGA. The DSP FPGA is the SPI bus master.

The SPI channel has 2 uses:

- 1. General purpose data transport e.g. diagnostic data such as captured raw sample data
- 2. To configure the FMC FPGA using the "slave serial" configuration interface

To transport SPI data, the data is synchronous and clocked using SPICLK. This SPI communications channel allows DSPA to communicate with the FMC independently of the sample data channel, and at much higher speed than is possible using the I2C interface. With DSPA core clock at 1.25GHz, the maximum SPICLK frequency is:

 $1/(3 \times SYSCLK7)$ or $1/(3 \times 4.8ns) = 69.4$ MBits/s.

The SPI channel is connected to both the FMC FPGA slave serial configuration interface, and a set of FPGA I/O pins to implement a SPI data slave. Other pins required for the slave serial configuration interface are connected to an I2C I/O port chip. The following table lists all of these connections:

Signal	Source	FMC FPGA configuration pins	FMC FPGA data slave pins	
SPIDIN	FMC SPI BUS input	DOUT	I/O data	
SPIDOUT	FMC SPI BUS output	DIN	I/O data	
SPICLK	FMC SPI BUS output	CCLK	I/O Clock input	
PROGRAM	I2C I/O CHIP output	PROGRAM_B	none	
DONE	I2C I/O CHIP input	DONE with pull up resistor	none	
INIT	I2C I/O CHIP input	INIT_B with pull up resistor	none	

An I2C input pin is connected to the FPGA DONE pin, which allows software to confirm the configuration was successful.

An I2C input pin is connected to the FPGA INIT_B so that software can confirm the state of the FPGA during configuration, and determine if a CRC error occurred during configuration.

The FMC FPGA is configured using the SPI interface and "slave serial" mode. The FMC FPGA is part number XC7A100T, which requires 30606404 bits to configure without compression. At 69.4MHz this process takes 0.441 seconds. With data compression, this process will be faster.

The FMC FPGA requires a low pulse on pin PROGRAM_B followed by a continuous stream of configuration bits, with bit 0 clocked on the first rising edge of CCLK after PROGRAM_B goes high. These requirements are met by driving PROGRAM_B with an output of an I2C parallel port, which is controlled by software. Software then waits until INIT_B signals the FPGA has finished clearing its previous configuration (if any), then transmits the serial configuration data as a continuous SPI data stream.

3.4.20 FPGA FMC INTERRUPTS

The FMC signal FMC_INTERRUPT is assigned as an FMC board output, and a DSP board input. It can be configured in software as a real time interrupt or DMA request.

3.4.21 FPGA FMC MGT

Eight MGT 500MByte/s lanes are routed from the DSP FPGA to the FMC connector.

3.5 DSP Interfaces

Digital signal processing power is provided by a pair of Texas Instruments <u>TMS320C6657</u> [5] Floating Point DSPs. These DSPs have been selected for their low-power (relative to performance) and low-latency characteristics.

The high clock frequency of 1.25GHz and broad internal parallelism of the TI Keystone DSP CorePac result in a floating-point processing power of up to 20GFlops per core.

Where the SMT-GSI-DSP is embedded in a control loop, this high processing rate minimises the contribution of the DSP to control loop delay.

Compared to previous generations of TI floating-point DSPs, the TMS320C6657 has plentiful internal memory: 1MB of static memory (or cache) per CorePac, with an additional 1MB of on-chip shared memory. This allows most real-time applications to run from on-chip memory, freeing the system design from the non-deterministic behaviour of cached SDRAM, and also reducing the overall power consumption.

The combination of these factors results in the real-world performance of the C6657 core being at least 4x faster than predecessors such as the TMS320C6713, and potentially up to 8x faster. The C6657 supports the instruction set of earlier Texas Instruments floating-point DSPs; recompiling existing software for the new processor architecture will realise further performance gains.

The dual-core architecture of the TMS320C6657 makes it possible for one core to be dedicated to real-time processing, with housekeeping tasks being offloaded to the second core; or for two different filters to be computed at the same time.

Due to the close coupling between DSPs offered by the TI Hyperlink, this approach can be extended to the pairing of DSP A and B – with housekeeping offloaded to DSP A and both cores of DSP B fully available for hard real-time processing.

However the DSPs are not so closely coupled that there is a risk of housekeeping and non-deterministic processing on DSP A interfering with the real-time processing of DSP B. This is one of the advantages of using two TMS320C6657s DSPs rather than a single four-core TMS320C6674; the other main benefit is lower thermal dissipation.

The TMS320C6657 has another key advantage over previous generations of TI floating-point DSP: the availability of Serial RapidIO communication ports which allow DSP systems to be expanded by the addition of processing modules. In the SMTC6657 design, each TMS320C6657 advanced DSP has:

- 2 DSP core subsystems, each performing up to 40G MACs or 20G FLOPs per second
- 64K Byte L1 cache memory per core
- 1024K Byte L2 cache memory per core, also configurable as core-local RAM
- 1024K Byte internal shared memory
- 32 bit DDR3-1333 memory interface with 1G Byte of memory

- 40G bit Hyperlink interface to the other DSP
- Four lanes of SRIO 2.1, each operating up to 5G bit/sec
 - One lane connected to the other DSP
 - One lane connected to the FPGA
 - Two lanes made available to the carrier card stack-down connector.
- A 5G bit/sec PCIe Gen2 x1 interface on the PCIe/104 connector
- EMIF16 Interface to the Xilinx Kintex-7 FPGA
- 16 way GPIO to the Kintex-7 FPGA
- I²C interface to a local Temperature sensor, shared parameter memory, on-board and data acquisition module FPGAs, and carrier card.
- JTAG interface for DSP debugging and tracing
- SPI bus interface to the FPGA
- High speed UART (used for development only, routed to the FPGA for optional forwarding to the front panel TTL I/O connector)

DSP A additionally has its 1 gigabit Ethernet port routed to the expansion I/O connector, and access to a large flash memory on its EMIF16 interface.

3.5.1 DSPA Ethernet

DSPA has a single Serial Gigabit Media Independent Interface (SGMII), which is connected to a dedicated Gigabit Ethernet Transceiver (PHY). The recommended part is Marvell 88E1112, because it is used by TI in their C66 EVMs, so the existing TI software will run without modification. It also supports both copper and fibre optic external interfaces at the same time, and it has a small 9mm square package. Both of these external interfaces are connected to the I/O expansion connector, so that the I/O board may implement either or both.

The SGMII interface operates at 1.25GBits/s and requires full impedance control. The PHY should be placed as close as possible to the DSP to minimise routing length. No vias are used to route the SGMII transmit and receive differential pairs.

The single ended PHY clock has strict jitter requirements and is routed with ground shields on either side to prevent cross talk from other signals. The fibre optic data pairs FIN and FOUT also operate at 1.25GBits/s and require full impedance control, and are routed without vias to the 100 way I/O expansion connector.

3.5.2 DSP JTAG

The DSP JTAG implements the standard <u>TI XDS560</u> [8] debugging interface as well as the full system trace back implemented by Texas Instruments in Code Composer Studio 6.x. The 60 way MIPI connector is located on the DSP board adjacent to the DSPs. The TI TMS320C6657 EVM has the TI-60 pin header fitted, however this requires more board space than the MIPI-60. Additionally the Spectrum Digital XDS560V2 emulation pod is supplied with the MIPI-60 connector as standard, and it requires an additional adapter for it to connect to the TI-60 connector.

The interface from both DSPs to the MIPI-60 connector has a total routing length constraint of 3 inches (76.2mm) maximum. The routing requirements are specified in TI document "spru655i.pdf" ref [18]. This is a very important layout constraint.

3.5.3 DSP EMIF16

The EMIF16 interface and SYSCLKOUT signal from each DSP is wired directly to the FPGA. The EMIF16 interface from DSPA is also wired to the 256MByte NOR flash. See above section FPGA EMIF16 for more details.

3.5.4 DSP UART

Each DSP has a dual UART port with each UART having 2 output signals and 2 input signals, making a total of 8 signals. These signals are all connected directly to the FPGA, for optional routing to external board I/O through the FPGA.

3.5.5 DSP GPIO

Each DSP has 32 GPIO pins, which are all connected to the FPGA, with some connected to the CPLD. During DSP reset they are used to set the DSP boot mode by the CPLD. After reset some have dedicated use and some are general purpose I/O. See sections FPGA GPIO and CPLD for more details of these connections.

The DSP GPIO pins are allocated as follows:

DSP BALL	Reset Bootmode Function	Reset Bootmode Description	GPIO	Normal Function	Normal Description
T25	Lendian	Endian config	00	IO00	See CPLD & FPGA sections
R25	Bootmode0	Boot device 0	01	IO01	See CPLD & FPGA sections
R23	Bootmode1	Boot device 1	02	IO02	See CPLD & FPGA sections
U25	Bootmode2	Boot device 2	03	IO03	See CPLD & FPGA sections
T23	Bootmode3	Sub mode 0	04	IO04	See CPLD & FPGA sections
U24	Bootmode4	Sub mode 1	05	IO05	See CPLD & FPGA sections
T22	Bootmode5	Sub mode 2	06	IO06	See CPLD & FPGA sections
R21	Bootmode6	Sub mode 3	07	IO07	See CPLD & FPGA sections
U22	Bootmode7	Sub mode 4	08	IO08	See CPLD & FPGA sections
U23	Bootmode8	Sub mode 5	09	IO09	See CPLD & FPGA sections
V23	Bootmode9	Sub mode 6	10	IO10	See CPLD & FPGA sections
U21	Bootmode10	Sub mode 7	11	IO11	See CPLD & FPGA sections
T21	Bootmode11	Sub mode 8	12	IO12	See CPLD & FPGA sections
V22	Bootmode12	Sub mode 9	13	IO13	See CPLD & FPGA sections
W21	Pciessmode0	PCIe mode 0	14	IO14	See CPLD & FPGA sections
V21	Pciessmode1	PCIe mode 1	15	IO15	See CPLD & FPGA sections
AD20	Pciessen	PCIe enable	16	Timi0	Timer in 0
AE21	not used	not used	17	Timi1	Timer in 1
AC19	not used	not used	18	Timo0	Timer out 0
AE20	not used	not used	19	Timo1	Timer out 1
AB15	not used	not used	20	Uartrxd	Uart 0 receive data
AA15	not used	not used	21	Uarttxd	Uart 0 transmit data
AC17	not used	not used	22	Uartcts	Uart 0 cts
AB17	not used	not used	23	Uartrts	Uart 0 rts
AC14	not used	not used	24	Uartrxd1	Uart 1 receive data
AC15	not used	not used	25	Uarttxd1	Uart 1 transmit data
AE16	not used	not used	26	Uartcts1	Uart 1 cts

AD15	not used	not used	27	Uartrts1	Uart 1 rts
AA12	not used	not used	28	Spiscs0	SPI chip select 0
AA14	not used	not used	29	Spiscs1	SPI chip select 1
AB14	not used	not used	30	Spidin	SPI data in
AB13	not used	not used	31	Spidout	SPI data out

The CPLD is connected to GPIO00-16 (17 pins) and drives them all during DSP reset to set the DSP bootmode. After reset is complete the CPLD drives some of the GPIO pins to signal interrupts, and to allow software to read the state of the DIP switches. Refer to the TMS320C6657 data sheet for details of the boot mode settings.

3.5.6 DSP RESET

This is driven by the CPLD so that each DSP is held in reset until the following conditions are met:

- 1. All power supplies have sequenced to a stable state
- 2. The boot mode has been set on the GPIO signals
- 3. There is no DSP reset required by the DSP JTAG connector

The CPLD can then release the DSP from reset. In the event of a power supply failure, the CPLD will begin the power down sequence and assert DSP reset.

3.5.7 DSP POWER

Each DSP has a number of power supply requirements and TI provide the following spreadsheet for power estimation: "<u>6657_Power_Spreadsheet_Version_1_8.xlsm</u>". The settings in this spreadsheet were increased from those supplied so that all parts are enabled and operating at 50% utilisation.

The DSP requires 5 separate power supplies, and the table below shows worst case peak power consumption estimates from the TI Power Estimator spreadsheet for 1 DSP only with all utilisation factors set to 100%. It includes the DDR3:

Voltage	Power Estimate Watts	Current estimate Amps	Function
0.850V to 1.103V 1.100V at startup	4.591	4.17A @ 1.1V 5.401A @ 0.85V	CVDD core adjustable
1.0V +/-0.05V	0.558	0.558	CVDD1 core fixed
1.8V + -0.09V	0.023	0.013	DVDD18 general I/O

1.5V +/-0.075V	0.533	0.355	DVDD15
	1.000	0.666	DDR3
0.75V (50% of 1.5V)	0.417	0.556	DDR3 Termination
Total	7.122	n/a	

Texas Instruments parts UCD9222 and UCD7242 are designed to supply a pair of DSP cores by providing a dual independent CVDD supply, controlled by each DSP with its 4 pin VID interface. It also provides digital monitoring of power supply parameters, including 3 auxiliary ADCs which can be used to monitor other supplies. The UCD9222 is connected to the I2C bus.

The sequencing of the DSP power supplies is controlled during both power up and down by the CPLD. The CPLD core is supplied by 1V8AUX which is always on. The I/O is powered by the DSP main 1V8 so that both the DSP and CPLD I/O are powered at the same time. The power supply enable I/O pins are supplied by 3V3 which is always on.

The following state machine list shows the power up sequence used. There is 10mS between each step. The following table lists the sequence in 10ms states:

STATE	CONDITION	NEXT STATE	OUTPUT
0	PGD3V3 and PGD5V0 and PGD2V3 and PGD1V8AUX and PGD1V2	ind 1	ENA2V5, DSPRESET
1	PGD3V3 and PGD5V0 and PGD2V3 and PGD1V8AUX and PGD1V2 and PGD2V5	und 2	ENCVDD, DSPRESET
2		und 3 und	EN1V0, DSPRESET
3		und 4 und	EN1V8, DSPRESET
4		und 5 und	EN1V5, DSPRESET
5	PGD1V8AUX and PGD1V2 and PGD2V5 and	und 6 und und	ENOV75, DSPRESET
6	PGD1V8AUX and PGD1V2 and PGD2V5 and	and 7 and and and and and and and and and an	(no change/wait) , DSPRESET
7	PGD1V8AUX and PGD1V2 and PGD2V5 and	ind 8 ind ind ind ind ind ind ind ind ind ind	(no change/wait) , DSPRESET

	PGD1V5 and PGD0V75		
8	PGD3V3 and PGD5V0 and PGD2V3 and PGD1V8AUX and PGD1V2 and PGD2V5 and PGDCVDD and PGD1V0 and PGD1V8 and PGD1V5 and PGD0V75	9	(no change/wait) , DSPRESET
9	PGD3V3 and PGD5V0 and PGD2V3 and PGD1V8AUX and PGD1V2 and PGD2V5 and PGDCVDD and PGD1V0 and PGD1V8 and PGD1V5 and PGD0V75 and RESET_MIPI = '0'	10	Continue, DSPRESET
9	PGD3V3 and PGD5V0 and PGD2V3 and PGD1V8AUX and PGD1V2 and PGD2V5 and PGDCVDD and PGD1V0 and PGD1V8 and PGD1V5 and PGD0V75 and RESET_MIPI = '1'	9	Stop here, DSPRESET
10	PGD3V3 and PGD5V0 and PGD2V3 and PGD1V8AUX and PGD1V2 and PGD2V5 and PGDCVDD and PGD1V0 and PGD1V8 and PGD1V5 and PGD0V75 and RESET_MIPI = '0'	10	Negate DSPRESET so DSP runs
10	PGD3V3 and PGD5V0 and PGD2V3 and PGD1V8AUX and PGD1V2 and PGD2V5 and PGDCVDD and PGD1V0 and PGD1V8 and PGD1V5 and PGD0V75 and RESET_MIPI = '1'	9	Assert DSPRESET

The power down sequence is the reverse of power up.

Note that the DSP JTAG MIPI interface can force the DSP to reset.

3.5.8 DSP SRIO

Each DSP has 4 SRIO interfaces, each operating up to 5G bit/sec, and these are divided with 2 directly connected to the SRIO down connectors, 1 to the other DSP and 1 to the FPGA.

The SRIO stacking connector is the "StackPC" Expansion Connector B1 (FPE bottom), see ref [19]. Pin allocation for the SRIO pairs is defined in the section below titled "SRIO Expansion Connector".

All SRIO routing is on the first internal signal layer from the top surface. No deeper layers are used because blind via impedance increases with depth.

3.5.9 DSP HYPERLINK

Each DSP has a Hyperlink port which is connected directly to the other DSP, to provide communication between the DSPs at up to 40GBits/s.

3.5.10 **DSP PCIe**

Each DSP has a PCIe interface which is connected directly to the PCIe/104 connector and routed down to the host board.

3.5.11 DSP EMIF32 & DDR3 memory

Each DSP has a bank of 1G Bytes of DDR3 SDRAM, operating at 1333M transfers/second, implemented by a pair of 16 bit wide memories. An additional memory chip provides extra data to implement error correction in real time.

There are a number of DDR3 routing requirements:

- 1. The DDR3 clock is routed on the surface layer only with no vias.
- 2. The DDR3 clock and control signals are routed from the DSP to DDR3 chip 1, chip2, chip3 in a single daisy chain with no branches, and no more than 1 via per memory chip. They are routed as a single group with length balancing as specified by the C6657 DDR3 design guide.
- 3. The DDR3 data signals are routed strictly point to point with no more than 2 vias. The data signals from each DDR3 chip are routed as a group with length balancing as specified by the C6657 DDR3 design guide.
- 4. NO other traces are routed on layers used by the DDR3 routing, in the vicinity of the DDR3 routing. Other signals can be routed on lower layers through this area, so that they are completely isolated from the DDR3 signals by power planes.
- 5. Terminating resistors are located as required by the C6657 DDR3 design guide.
- 6. Differential signals are length balanced to ensure both halves meet the tolerance specified in the C6657 DDR3 design manual.
- 7. The TI DDR3 timing Excel spread sheet is used during the routing process to ensure that the actual routed trace lengths provide a working solution to the DSP timing requirements.

3.5.12 DSP I2C

Each DSP is connected to the global I2C bus. The DSP I/O is all 1V8 maximum, so a level convertor is required to translate this level to the 3V3 level required by all other I2C devices. The recommended device is TI part PCA9306, as used on the TI EVM.

The global I2C bus has the following 7 bit address map:

Address hex	Address range hex	Part number	Description	
TBD	TBD	XCKU035	Kintex-7 FPGA as a peripheral	
54	54-5F	CDCM6208	Clock system generator	
4A	48-4B	ADS7830	Supply voltage monitor 8 channel ADC	
4C	48-4F	TMP75C	Temperature sensor	
50	50-53	M24M02	DSP Parameter EEPROM	
54	54-57	M24M02	FMC daughterboard EEPROM	
0C	0c-0E	DAC121C081	FMC VADJ 12 bit DAC	
48	48-48	DAC121C081	FMC VADJ 12 bit DAC (fixed broadcast address)	
4E	01-7F	UCD9222	DSP SmartReflex PSU	
TBD	TBD		PCIe/104 [™] motherboard connector SMBUS router	

Notes:

The I2C bus 7 bit address range is hex 00 to 7F.

The FMC specification requires all FMC I2C bus devices to use FMC signals GA0 and GA1 to define the least significant bits of their 7 bit address. The SMT6657 connects GA0 and GA1 to the CPLD, so these signals can be changed by modifying the CPLD.

The CPLD sets GA0=1 and GA1=1, and devices on SMT6657 do not have an address with least significant bits equal to 11. This guarantees no FMC addresses clash with devices on the SMT6657 carrier.

The EEPROM address in the FMC specification is required to have an address with the most significant bits corresponding to 0b1010, which equates to a 7 bit address range of 0x50 to 0x57.

The 2M bit EEPROM only allows external control of address bit A2, since address bits A1 and A0 are used for addressing the memory array. So for the FMC daughterboard the FMC signal GA1 is connected to EEPROM address select A2. The EEPROM on the DSP board has address select input A2 connected to the CPLD,

SMT-6657

which sets it to 0, and there is no address conflict. This can be changed by modifying the CPLD.

The DSP I2C bus operates at 1V8, and all other devices operate at 3V3. An I2C voltage translator (<u>http://www.ti.com/lit/gpn/pca9306</u>) connects both of these I2C segments when enabled by the CPLD. The CPLD only enables this translator after both DSPs have been released from reset. This allows external communication with the 3V3 bus segment, while the DSPs are not ready. This is essential, since the UCD9222 must be programmed over I2C to supply power to the DSPs.

3.6 I2C Temperature Sensor

A temperature sensor is centrally located between the DSPs and FPGA, attached to the I²C bus and with its alarm output connected to the CPLD, e.g. <u>LM73</u>.

The temperature sensor has a programmable alarm threshold and can signal an alarm condition to the CPLD, which can force a complete shutdown if required, in the event of a prolonged over temperature condition.

Due to its presence on the I²C bus the measured temperature can be monitored by either DSP, as well as a service processor on the carrier card. The extension of the interface to the carrier card enables intelligent control of fans in the enclosure.

3.7 I2C Supply Volts ADC

An 8 channel 12 bit ADC with I2C interface <u>ADS7828</u>, monitors the power supply voltages. It has a separate 2V5 reference so that the full scale input voltage is 2.5V. Supplies less than 2.5V are measured without attenuation, the rest are attenuated with a resistive divider with an output impedance of 2K ohms or less, to maintain 12 bit accuracy given the 1uA typical leakage current of the ADC. The following supplies are measured:

Measure	Supply Tolerance	Description
+1V8 Volts	+/-0.090V	DSP & FPGA I/O
+1V5 Volts	+/-0.075V	DSP & DDR3
+1V0 Volts	+/-0.050V	DSP & FPGA core supply
CVDD Volts	0.9V to 1.1V	DSP core supply variable
+2V5 Volts	+/-0.15V	Ethernet phy and isolation transformers
+1V8_AUX Volts	+/-0.090V	CPLD core (always on)
+3V3 Volts	+/-0.15V	FMC & CPLD I/O
+1V2 Volts	+/-0.06V	Ethernet phy

3.8 CPLD

The <u>Xilinx XC2C384-10FTG256I</u> CPLD strictly controls the DSP power supply start up and shut down sequence, and has direct control of each DSP reset. This allows it to set each DSP to boot from a location specified by user set DIP switches, by controlling the state of the DSP GPIO signals during reset.

After reset is complete the GPIO signals can be used as interrupts to each DSP to signal temperature alarm, and as inputs to the CPLD for software to drive a watch dog timeout, which can force a DSP reset in the event of a software crash.

It also allows DSP A to control the reset of DSP B, and performs a correctly sequenced power down in the event of an over temperature timeout, or a failure of the PCIe/104 power supply, indicated by the PCIe/104 PWRGOOD signal.

The following table lists the connections to the CPLD:

Source	Signals	Q T Y	CPLD In/ Out	Description	
CLOCKS	CLK25M	1	Ι	25MHz clock from master crystal oscillator	
DSPA	GPIO00-16	17	I/O	Sets boot modes / general dspa i/o	
DSPB	GPIO00-16	17	I/O	Sets boot modes / general dspb i/o	
DSPA	NMI_N	1	0	Non maskable interrupt	
DSPB	NMI_N	1	0	Non maskable interrupt	
DSPA	LRESET_N	1	0	Warm reset	
DSPB	LRESET_N	1	0	Warm reset	
DSPA	LRESETNMIEN_N	1	0	Enable for core selects	
DSPB	LRESETNMIEN_N	1	0	Enable for core selects	
DSPA	CORESEL0-1	2	0	Core select for LRESET and NMI	
DSPB	CORESEL0-1	2	0	Core select for LRESET and NMI	
DSPA	RESETFULL_N	1	0	Full reset	
DSPB	RESETFULL_N	1	0	Full reset	
DSPA	POR_N	1	0	Power on reset	
DSPB	POR_N	1	0	Power on reset	
DSPA	RESETSTAT_N	1	Ι	Reset status	
DSPB	RESETSTAT_N	1	Ι	Reset status	
DSPA	BOOTCOMPLETE	1	Ι	Boot progress indication	
DSPB	BOOTCOMPLETE	1	Ι	Boot progress indication	

SMT-6657

Temp Sensor	TEMPALARM	1	Ι	Temperature alarm	
DIP SWITCH	SWITCHES0-7	8	Ι	User set switches	
PSU	PGD5V0	1	Ι	5v0 power good	
PSU	PGD3V3	1	Ι	3V3 power good	
PSU	PGD2V5	1	Ι	2V5 power good	
PSU	PGD1V8	1	Ι	1V8 power good	
PSU	PGD1V5	1	Ι	1V5 power good	
PSU	PGD1V2	1	Ι	1V2 power good	
PSU	PGD1V0	1	Ι	1V0 power good	
PSU	PGDCVDDA	1	Ι	DSPA CVDD power good	
PSU	PGDCVDDB	1	Ι	DSPB CVDD power good	
PSU	PGD0V75	1	Ι	0V75 power good	
PSU	EN2V5	1	0	2V5 enable	
PSU	EN1V8	1	0	1V8 enable	
PSU	EN1V5	1	0	1V5 enable	
PSU	EN1V2	1	0	1V2 enable	
PSU	EN1V0	1	0	1V0 enable	
PSU	ENCVDDA	1	0	CVDDA enable	
PSU	ENCVDDB	1	0	CVDDB enable	
PSU	ENOV75	1	0	0V75 enable	
IO	IOENABLE	1	0	Enable front panel I/O	
PCIe/104	PWRGOOD	1	Ι	Host power is good	
PCIe/104	ALERT	1	Ι	Host interrupt	
PCIe/104	PE_RST_N	1	Ι	Host reset	
PCIe/104	PSON_N	1	I/O	Host primary PSU on	
CLOCKS	SYNC_N	1	0	Synchronise all clock outputs	
CLOCKS	PDN_N	1	0	Power up/down clock synthesiser	
CLOCKS	RESET_N	1	0	Reset clock synthesiser	
CLOCKS	STATUS0-1	2	Ι	Clock synthesiser status	
LED (RED)	RESET_LED	1	0	Reset LED (on during DSP reset)	
TOTAL		91		Total CPLD I/O pins	

Notes:

The postfix "_N" denotes an active low signal.

SMT-6657

CPLD XC2C384-10FTG256 has 212 I/O pins in 256 ball BGA 17mm x 17mm. There are 121 CPLD I/O pins not allocated in the table above which are available to implement general logic as required.

The sequencing of the DSP power supplies is controlled during both power up and down by the CPLD. The CPLD core is supplied by 1V8AUX which is always on. The I/O is powered by the DSP main 1V8 so that both the DSP and CPLD I/O are powered at the same time. The power supply enable I/O pins are supplied by 3V3 which is always on. See the DSP power section for more details.

The CPLD is connected to GPIO00-16 (17 pins) of both DSPA and DSPB, and drives them all during DSP reset to set the DSP bootmode. After reset is complete the CPLD drives some of the GPIO pins to signal interrupts, and to allow software to read the state of the DIP switches, and the FPGA configuration. Refer to the TMS320C6657 data sheet for details of the boot mode settings.

GPIO	Function	DSP In/Out	Description
00	INTO_TEMP	In	Temperature alarm interrupt
01	INT1_ALERT	In	PCIe/104 Alert interrupt
02	INT2_PWRGOOD	In	PCIe/104 Powergood interrupt
03	INT3_DSP	In	Interrupt from the other DSP
04	STATUS_DATA	In	Serial CPLD status data
05	STATUS_CLOCK	Out	Serial CPLD status clock
06	RESETDSP	Out	Reset the other DSP
07	DSP_INTERRUPT	Out	Interrupt to the other DSP
08	FPGA_PROGRAM_B	Out	DSPA: FPGA configuration control
			DSPB: not used
09	Reserved FPGA	n/a	Reserved for FPGA use
10	Reserved FPGA	n/a	Reserved for FPGA use
11	Reserved FPGA	n/a	Reserved for FPGA use
12	Reserved FPGA	n/a	Reserved for FPGA use
13	Reserved FPGA	n/a	Reserved for FPGA use
14	Reserved FPGA	n/a	Reserved for FPGA use
15	Reserved FPGA	n/a	Reserved for FPGA use
16	Reserved FPGA	n/a	Reserved for FPGA use

After reset the CPLD uses GPIO00-16 in the same way for both DSPA and DSPB:

CPLD STATUS data is read serially and has the following bits:

BIT	NAME	DESCRIPTION

0	SWITCHESO	Dip switch 0
1	SWITCHES1	Dip switch 1
2	SWITCHES2	Dip switch 2
3	SWITCHES3	Dip switch 3
4	SWITCHES4	Dip switch 4
5	SWITCHES5	Dip switch 5
6	SWITCHES6	Dip switch 6
7	SWITCHES7	Dip switch 7
8	FPGA_INIT_B	Fpga configuration wait, or crc error
9	FPGA_DONE	Fpga configuration complete
10	Reserved=(0)	
11	Reserved=(0)	
12	Reserved=(0)	
13	Reserved=(0)	
14	Reserved=(0)	
15	Reserved=(0)	

The DSP can read the STATUS_DATA using a simple serial protocol. The DSP drives the STATUS_CLOCK low for at least 2ms, then pulses STATUS_CLOCK high for less than 10us for each of the 8 data bits, and reads the state of STATUS_DATA to determine the state of each status bit. The CPLD has a 1ms timer which measures the time STATUS_CLOCK is low and resets the output bit counter to 0 if it is low for more than 1ms.

Each DSP can interrupt the other DSP.

Each DSP can force the CPLD to reset the other DSP.

The watchdog programmable timer is implemented in the FPGA, and it has a dedicated connection to the CPLD which will reset both DSPA and DSPB if there is a watchdog timeout.

The CPLD has 3 separate power supplies: 1V8AUX is the core supply and is always on 3V3 is the LVTTL I/O supply for the PSU enable signals 1V8 is the DSP I/O supply

As far as possible, the CPLD design process is restricted to the smaller CPLD XC2C256-7FTG256I, in case the design is small enough to fit into this part for production.

3.9 DSP Booting

The DSPs support a total of 6 boot modes:

- 1) EMIF16 NOR flash or through the FPGA
- 2) SRIO
- 3) Ethernet
- 4) PCIe
- 5) I²C PROM
- 6) Hyperlink (from the other DSP)

The currently active boot mode is controlled independently for each DSP by the CPLD. User set DIP switches allow manual control of the boot mode during test and development.

Typically DSP A provides DSP B with its boot image using either the Hyperlink or the shared SRIO, and provides the FPGA with the configuration image using the EMIF16 interface.

3.9.1 DIP Switches

There are 8 dip switches, which set the boot mode for both DSPs. The surface mount switch assembly has right angle keys for easy access in a stacked system, and a pin pitch of 1.27mm for small PCB footprint. All 8 switches are connected to the CPLD. The switch is mounted at the PCB edge near the I/O expansion connector.

SWITCH	DSP	DESCRIPTION
1	А	Boot mode select switch 0
2	А	Boot mode select switch 1
3	А	Software readable switch 0
4	А	Software readable switch 1
5	В	Boot mode select switch 0
6	В	Boot mode select switch 1
7	В	Software readable switch 0
8	В	Software readable switch 1

The dip switches are divided into 2 banks, 4 switches for each DSP:

Note: switches are ON to indicate 1 or high.

The boot modes are selected differently for each DSP:

Boot Mode selection	DSPA Boot Source	DSPB Boot Source
0	EMIF16 FLASH	HYPERLINK
1	SRIO	SRIO
2	PCIE	PCIE
3	NO BOOT	NO BOOT

The setting "NO BOOT" is useful during development and production when there is no valid boot image in the EMIF16 FLASH.

3.10 Flash Memories

All flash memory parts have a minimum 20 year data retention.

3.10.1 **256KByte I²C EEPROM**

This is a 2M bit or 256K byte serial EEPROM, and is intended to provide storage for board identification and serialisation, usage data, and other parameters. Connected to the system management I²C bus, this EEPROM is accessible to both DSPs and the on-board FPGA.

Either of the following parts may be used:

Manufacturer	Part number	Data retention years	Write cycle endurance
STM	<u>M24M02</u>	200	4M
ATMEL	AT24CM02	100	1M

3.10.2 256MByte Parallel NOR Flash

A 1.8 Volt 2G bit 256M byte 128M by 16-bit parallel NOR flash memory is present on the EMIF16 interface of DSPA, so that DSPA software can read and securely write to this memory at high speed. NOR flash memory is used in preference to NAND flash for increased reliability.

This memory typically holds the boot images for both DSPs, the local Kintex-7 FPGA, and the FPGA on the FMC daughter board.

Sufficient capacity is provided to enable an operating system running on DSP A to implement a file system alongside the boot images.

The following part may be used: Micron <u>PC28F00BP30EFA-ND</u>.

Note that endurance is specified as 100,000 erase cycles per block, so this memory should be used with caution, for applications that require continuous block erase. For further details of data retention, please see this Micron technical note: <u>TN-12-30</u>: <u>NOR Flash Cycling Endurance and Data Retention</u>.

3.11 Clock System

DEVICE	CLOCK	FREQ MHz	Description
DSPA & B	CORECLK	100	Core clock input to main PLL
DSPA & B	SRIOSGMIICLK	250	SRIO & SGMII clock
DSPA & B	DDRCLK	66.6	DDR reference clock
DSPA & B	PCIECLK	100	PCIe serdes clock
DSPA & B	MCMCLK	250	Hyperlink reference clock
FPGA	PCIECLK	100	PCIe serdes clock
FPGA	SRIOCLK	125	SRIO clock for Gen2 @ 5GHz
FPGA	OPTCLK	200	Optical I/O clock
FPGA	FMCRXCLK	125	FMC data receive clock
FPGA	FMCTXCLK	250	FMC data transmit clock

The following low jitter differential reference clocks are required:

PCIECLK for each DSP and the FPGA is supplied by the PCIe/104 connector from the host system, and is 100MHz.

The DSP SRIOCLK is 250MHz which is 1/20th of the SRIO data bit rate of 5GBit/s. It is also used by the SGMII interface in DSPA for Ethernet data.

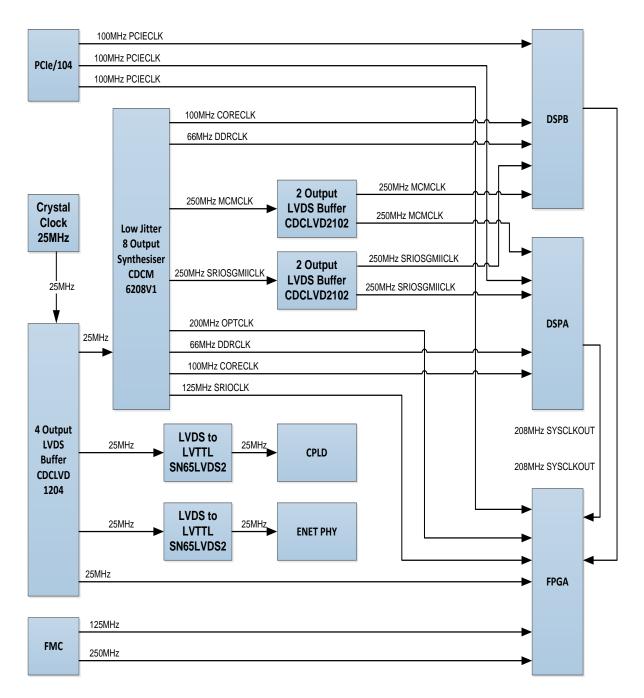
Apart from the PCIECLK, the other reference clocks are generated by a single ultralow jitter frequency synthesiser CDCM6208V1, which can generate 8 separate ultra low jitter clocks. At power on, these clocks default to 4 different frequencies: 66.66, 100, 125, 156.25MHz. The CDCM6208V1 is also connected to the I2C bus so that any bus master can reprogram the CDCM6208V1 to generate different frequencies from the default. The default frequency of 100MHz is used to clock the DSP cores, and the default frequency of 66.66MHz is used to clock the DSP DDR3 interfaces, so these clocks are correct when the DSPs are released from reset. The other clock frequencies are changed to their final value by boot software on DSPA.

Output	Default Freq MHz	Final Freq MHz	Destination	Software change required for full speed operation
Y0	156.25	200.0	FPGA OPTCLK	Yes
Y1	156.25	250.0	DSPA & DSPB SRIOSGMIICLK	Yes
Y2	125.0	250.0	DSPA & DSPB MCMCLK	Yes
Y3	125.0	125.0	FPGA SRIOCLK	No
Y4	66.6	66.6	DSPA DDRCLK	No
Y5	66.6	66.6	DSPB DDRCLK	No
Y6	100.0	100.0	DSPA CORECLK	No
Y7	100.0	100.0	DSPB CORECLK	No

The CDCM6208V1 outputs are connected as follows:

To drive both DSPs with identical MCMCLK clocks and SRIOSGMIICLK clocks, outputs Y1 and Y2 are duplicated using a dual 1:2 LVDS buffer CDCLVD2102.

The CDCM6208V1 and the FPGA require a low jitter 25MHz LVDS crystal clock source. The Ethernet PHY and the CPLD require a 25MHz LVTTL crystal clock source. These clocks are all provided by fully low jitter buffering a single 25MHz low jitter crystal oscillator with CDCLVD1204. This buffers a single LVDS source and drives 4 LVDS outputs. The LVTTL clock for the Ethernet PHY and the CPLD are generated by converting LVDS clocks to LVTTL with SN65LVDS2, as close as possible to the destination. Using LVDS to distribute the LVTTL clocks greatly reduces the effects of noise on the clocks, and the electromagnetic radiation of these clocks.


The FMC LVDS data acquisition interfaces have 2 shared ultra-low jitter clocks generated on the FMC daughterboard, which are fed directly to FPGA clock inputs.

The SYSCLKOUT clocks from each DSP are fed directly to the FPGA, so it can support high-speed operation of the EMIF16 for each DSP. These are at 1/6 of the DSP core frequency, which is 208.3MHz for a 1.25GHz DSP. As both DSPs have the same CORECLK, the SYSCLKOUT from each DSP will have the same frequency, although there may be some difference in the phase. The FPGA internal PLL requires a clock between 70MHz and 800MHz, so SYSCLKOUT from DSPA is used as the reference clock for the FPGA PLL. This has the advantage that processing in the FPGA can be synchronous to the DSP cores, which can reduce latency caused by synchronising data when passing it across clock domains . The SYSCLKOUT signals are 1.8V LVTTL, and are routed with 0V guard traces to ensure added jitter from adjacent signals is minimised.

The DSPs power up with their internal PLL bypassed, so the external CORECLK is used to clock the cores directly. With the CORECLK at 100MHZ, SYSCLKOUT will be 16.6MHz with the PLL bypassed. DSPA will enable its internal PLL during booting so that it generates 1.25GHz before it configures the FPGA, so that the configured

FPGA always receives the correct SYSCLKOUT frequency. This places a restriction on the minimum DSP core frequency for correct operation of the FPGA PLL, which is 70MHz x 6 = 420MHz. This restriction is only relevant if it is desired to reduce the DSP internal core clock frequency, for instance to reduce power consumption.

Note that ALL clocks in the system are distributed strictly point to point with no branches, and impedance control.

The diagram below shows the high speed continuous clock architecture:

Notes:

The following clocks are not shown: SPI data clock, I2C data clock, DDR3 clock.

3.12 Power Supplies

The table below shows the power supplies available from the PCIe/104 "one bank" connector:

Volts	Amps	Watts
+3.3	3.6	11.9
+5V	8.4	42.0
+5V_SB	3.6	18.0
TOTAL	n/a	71.9

There are no requirements to use 5 Volt power directly, so it is used to supply a number of DC-DC voltage convertors. The 3V3 supply is used directly.

The FMC Low Pin Count (LPC) connector is specified with the following power supplies. The supplies 3P3V and 3P3VAUX are supplied directly from the PCIe/104 3.3V supply. The others are supplied from DC-DC converters.

Supply	Volts	Amps	Watts
VADJ	0 to 3.3	2	0 to 6.6
VREF_A_M2C	0 to VADJ	0.001	0 to 0.0033
3P3VAUX	3.3	0.020	0.066
3P3V	3.3	3	9.9
12P0V	12.0	1	12.0

The FMC supply 12POV (12.0V) is supplied directly from either the host board through the SRIO connector, or from the I/O expansion board.

The FMC supply VADJ is generated using a DC-DC from the main +5V supply. Allowing for 80% efficiency the maximum +5V power draw is 8.254W (1.65A). The FMC supply VREF_A_M2C is generated using a linear regulator from VADJ. The table below shows estimated worst case power draw for the board. Allowance has been made for DC-DC convertor efficiency of 80%. The FMC power draw is the maximum permissible:

DEVICE	5V AMPS	5V WATTS	3V3 AMPS	3V3 WATTS	TOTAL WATTS
C6657 DSP x 2	2.4	12.0	0.0	0.0	12.0
FPGA	1.49	7.45	0.3	0.99	8.44
DDR3	0.56	2.8	0	0	2.8
FMC	1.65	8.254	3.02	9.966	18.22
Other devices	0.0	0.0	0.3	0.99	0.99
TOTALS	6.1	30.5	3.62	11.94	42.45

This worst case analysis shows that it is possible to use all the available 3.3V power directly from the PCIe/104 connector.

Supply	Tolerance	Estimated	Estimated	Description
Volts	Volts	Max Amps	Max	
			Watts	
2.5	+/-0.15	0.43	1.075	Ethernet PHY 88E1112
1.8	+/-0.09	0.41	0.738	2 x DSP I/O
				FPGA I/O
1.8_AUX	+/-0.10	0.01	0.018	CPLD core
1.5	+/-0.075	2.042	3.063	2 x DSP & DDR3
1.2	+/-0.06	0.32	0.384	Ethernet PHY 88E1112
1.0	+/-0.05	1.116	1.116	2 x DSP Cores
				FPGA CORE
0.75	(half 1.5V	1.112	0.834	2 x DDR3 termination
	rail)			
CVDDA	TBD	5.4@0.85V	4.59	1 x DSP Core
(0.85 to 1.1)				
CVDDB	TBD	5.4@0.85V	4.59	1 x DSP Core
(0.85 to 1.1)				

The system requires 8 further power supplies:


The following table shows the difference between using a DC-DC and a linear voltage regulator for each supply, where feasible. The source for all DCDC is 5V0 and efficiency is 80%. Each linear regulator is supplied from the next highest voltage supply. The difference is shown as the power lost in each power supply:

Supply Volts	DCDC Watts Lost	Linear Source Volts	Linear Watts Lost
2.5	0.269	3.3	0.344
1.8	0.185	2.5	0.287
1.5	0.766	1.8	0.613
1.2	0.096	1.5	0.115
1.0	0.279	1.2	0.223

Using DC/DC converters with better than 80% efficiency for all supplies, offers a net saving over using idealised linear regulators. However in some cases the total power lost is small, and a linear regulator may be advantageous for both output noise and PCB space. Where a DC/DC is used the output ripple must be shown to be within the supply voltage tolerance.

All decoupling capacitors are ceramic to provide increased reliability over Tantalum capacitors.

The drawing below shows the power supply architecture, with maximum PCIe/104 connector current supplies, and estimated load current draws:

3.13 I/O expansion connector

The Ethernet, FPGA JTAG, and FPGA I/O pins are all routed to a dedicated high density 100-way, right angle I/O connector, <u>Samtec type LSHM</u>. This allows an add-on I/O PCB to be plugged in at the side of the DSP PCB, above the FMC daughterboard.

This I/O PCB provides external front panel connectors for application-specific interfaces. This eliminates the requirement for any cables in a systems design.

The I/O PCB is NOT required for full operation of the DSPs.

The standard I/O board illustrated in the PCB layout provides the following I/O connectors:

- 1 (one) RJ45 gigabit Ethernet connector (front panel)
- 4 (four) Optical Inputs (front panel)
- 4 (four) Optical Outputs (front panel)
- 4 (four) TTL inputs and 4 TTL outputs via LEMO coax sockets (front panel)
- 1 Optical duplicate of a TTL ouptut
- 2 (two) TI/GSI DSP Links, 34 way IDC (front panel)
- 1 (one) Xilinx FPGA JTAG 14 way IDC (inboard)
- 1 (one) 500MByte/s MGT lane

See the SMT-IO-GSI specifications for further details of the standard I/O board.

Source	Signals	Q T Y	DSP PCB In/ Out	Description
ENET PHY	Copper ENET	8	I/O	1GBit/s copper I/O
ENET PHY	Fibre ENET	5	I/O	1.25GBit/s fibre I/O
FPGA	4 x LVDS	8	0	Optical outputs
FPGA	4 x LVDS	8	Ι	Optical inputs
FPGA	2 x LED	2	0	Front panel LEDs
FPGA	24 x LVTTL	24	I/O	2 x DSP links
FPGA	4 x LVTTL	4	0	LVTTL outputs
FPGA	4 x LVTTL	4	Ι	LVTTL inputs
FPGA	JTAG	4	I/O	FPGA Xilinx Jtag
CPLD	IOENABLE	1	0	Output enable
FMC	+12V	2	Ι	Power supply for FMC only
PCIe/104	+5V0	1	0	Power for I/O buffers
PCIe/104	+3V3	1	0	Power for I/O buffers
PSU	+2V5	1	0	ENET transformer common
FPGA	MGT	6	I/O	MGT 500MByte/s
-	GND (0V)	21	-	System ground
TOTAL		100		

The following table lists all the signals on the I/O connector. Differential signals occupy 2 pins:

Notes:

The postfix "_N" denotes an active low signal

All differential pairs have each half on adjacent pins, with GND pins between each pair. See the Samtec performance characterisation for pin pair assignment.

LSHM current rating is 1.3A per pin at @ 95°C ambient

The ENET copper isolation transformer is located on the I/O PCB.

3.14 SRIO expansion connector

The SRIO expansion connector carries 4 separate SRIO connections down to the host board. This connector uses the "Stack-PC" standard expansion connector B1, known as FPE (bottom). The specification for this connector is defined on page 30 of StackPC specification ref [19] published <u>here</u>: The FPE pins used for the SRIO connections are detailed below.

This connector also carries +12.0V from the host board to the FMC board and 4 MGT lanes to the FPGA, capable of supporting additional PCIE connections.

The table below shows the pins actually connected in SMT6657:

FPE	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
C1	DB0	DB1	GIO0	REF CLK0p	GIO1		GIO2		GIO3	
C2	GND	DB2	GND	REF CLK0n	GND		GND		GND	
C3	DB3	DB4		GND		GND		GND		GND
C4	DB5	DB6								
C5	GND	DB7	GND		GND		GND		GND	
C6	DB8	GND	SRIO TX0p	GND	SRIO TX1p	GND	SRIO_ TX2p	GND	SRIO TX3p	GND
C7	DB9	DB10	SRIO TX0n	SRIO RX0p	SRIO TX1n	SRIO RX1p	SRIO TX2n	SRIO RX2p	SRIO TX3n	SRIO RX3p
C8	GND	DB11	GND	SRIO RX0n	GND	SRIO RX1n	GND	SRIO RX2n	GND	SRIO RX3n
C9	PCle TX0p	GND	PCle TX2p	GND		GND		GND		
C10	PCle TX0n	PCle TX1p	PCle TX2n	PCle TX3p						
C11	GND	PCle TX1n	GND	PCle TX3n	GND		GND		GND	PE_ RST_n
C12	PCle RX0p	GND	PCle RX2p	GND		GND		GND	PCIe CLK0p	GND
C13	PCle RX0n	PCle RX1p	PCle RX2n	PCle RX3p					PCIe CLK0n	BUS_ ERR_n
C14	GND	PCle RX1n	GND	PCle RX3n	GND		GND		GND	CON FIG0
C15		GND		GND		GND		GND		CON FIG1
C16										CON

										FIG2
C17	GND		GND		GND		GND		GND	Res
C18		GND		GND		GND		GND	Res	+12V
C19									Res	+12V
C20	GND		GND		GND		GND		Res	+12V

NOTES:

- 1. Transmit is motherboard output. Receive is motherboard input
- 2. GIO are shared to all 3 sites. SMT6657 provides a weak pull up TO +3V3. Usage is TBD. They are connected to both the CPLD and the FPGA on SMT6657. Series damping resistors of 22 Ohms are used.
- 3. At each FPE site, DB0-11 and GIO0-3 and 4xGND are connected to a 2x10 0.1 inch square pin header on the motherboard for development and debugging.
- 4. REFCLK0 is a single differential 25.000MHz crystal clock, distributed on the motherboard with a CDCLVD1204 2 to 4 LVDS buffer, to all 3 FPE sites. This can optionally be used by the SMT6657 instead of a local crystal. A central clock ensures there is no frequency tolerance error between the sites, and allows all 3 sites to synchronise.
- 5. DB0-11 are used for development and debug only, and can be disconnected or set to high impedance for production.

4 PCB Layout

4.1 Heat Sinks

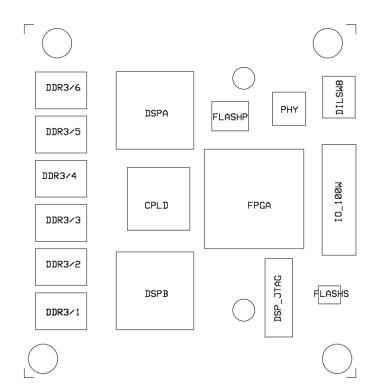
Individual pin fin heat sinks are attached to both DSPs and the FPGA with clips.

4.2 Component Placement

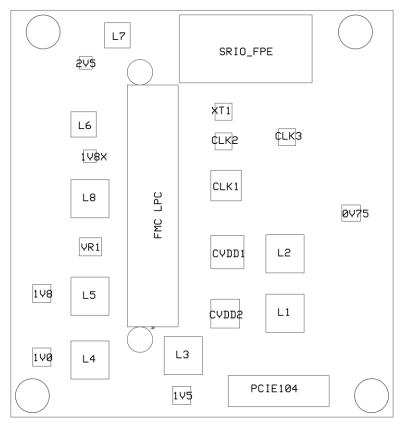
There are 2 primary constraints on the component placement:

- 1. The DSP JTAG interface total trace length must not exceed 3 inches (76.2mm), which includes trace length on the I/O expansion board up to the MIPI 60 way connector.
- 2. The DSP DDR3 interface must have no other components between the DSP and its 3 DDR3 memory chips.

With the MIPI JTAG connector mounted on the top of the PCB near the DSPs, we can place all 6 DDR3 chips on one side, with the DSPs next to them, and the FPGA next to the 100 way I/O connector.


There are 8 switching regulators and associated inductors and capacitors. These are mostly located on the bottom of the PCB.

There are 4 main chips in the clock generator system, and these are also located on the bottom of the PCB.


The maximum component heights are 8.76mm on the top and 4.83mm on the bottom of the PCB. This means there are no restrictions on ceramic capacitor placement. The DSP CVDD regulators supply up to 4.1 Amps each and the 1.0V regulator supplies up to 5.7 Amps.

Both DSPs and the FPGA are fitted with clip on pin fin heatsinks.

The placement drawings below are a guide showing possible placement of the major components only. There are 8 switch mode power controllers, and this means that there are also a large number of big decoupling capacitors required, as well as the usual smaller high frequency decoupling capacitors (not shown). Each bank of DDR3 memories requires a significant number of termination resistors (not shown).

Top surface component placement (top view)

Bottom surface component placement (bottom view)

PCB Construction

4.3

The following design requirements force the use of blind and buried vias:

- 1. Component placement on the top and bottom surface of the PCB overlap, so through vias can not be used.
- 2. Component packing density is sufficiently high that through vias would waste too much PCB surface area on the surface where they are not connected.
- 3. Many very high speed signals require via stub length to be taken in to account making routing through vias difficult.
- 4. Many very high speed signals require via impedance discontinuity to be an absolute minimum.
- 5. The DDR3 memory traces must be completely isolated from all other signals, however component placement forces routing non DDR3 signals under the DDR3 chips. This can be done by using the signal planes nearest the bottom for non DDR3 signals, as long as through vias are not used.

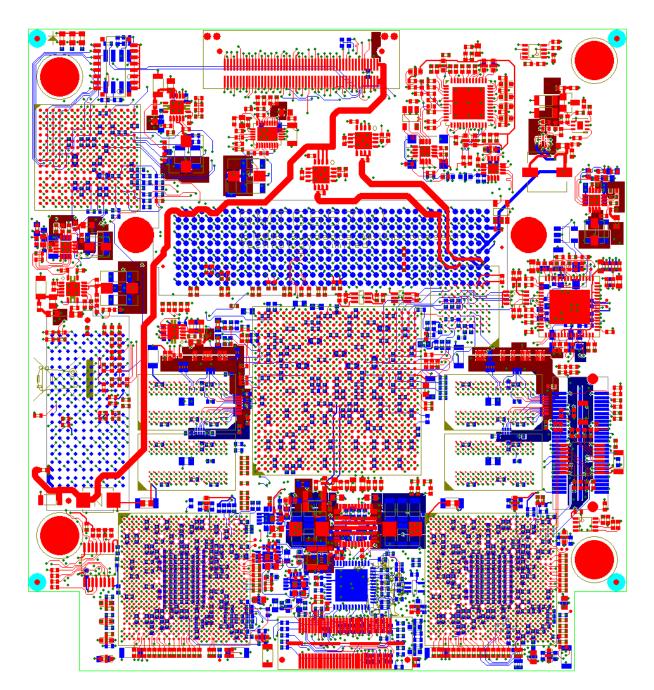
The following drawing shows the layer stack used by Texas Instruments for their C66xx EVM pcbs:

ТОР	0.5	07		
KXX	XXXXXXXXXX		3mils	р.р
L2_GND	0.5	ΟZ		
			4mils	core
	ZZZZZZ 0.5	oz	7mils	р.р
L4_PWR	0.5	OZ		
			6mils	core
	ZZZZZZ _{0.5}		4.5mils	р.р
L6_GND	0.5			
			4mils	core
L7_GND	0.5		4.5mils	nn
	$\sim \sim $		1.511115	
		02 	6mils	core
L9_PWR	• 0.5		7mils	<i>p.p</i>
L10	0.5	OZ	4mils	core
	ZZZZZZ _{0.5}	oz	3mils	р.р
BOT	0.5	OZ		

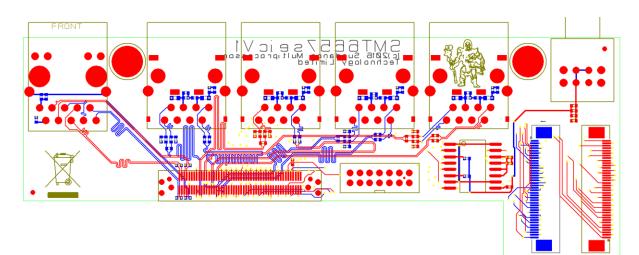
This 12 layer stack provides 6 signal layers and 6 power planes, of which 4 are ground and 2 are power. The use of 0.5oz copper unnecessarily restricts heat flow internally across the board, and from SM pad to via. The SMT6657 PCB design uses a heavier copper weight, since heat flow increases almost exponentially with copper weight. Higher copper weight also increases PCB reliability. So it is recommended that this stack up is used, but with copper weight increased from 0.5oz (17.5um) to 1oz (35um). Note that surface layers will have their copper weight increased by plating, so that 1oz bare copper will increase to around 1.5oz on the surface.

If routing this 12 layer stack is difficult due to component density, it may be necessary to increase the number of layers to 16, with 8 signal layers and 8 power planes.

Layer		Stack up	Impedance ID	Supplier	Supplier Description	Description	Туре	Finish Thickness
	_							
				Taiyo	PSR-4000 GPO1EU	Taiyo PSR-4000	SolderMask	47 700
1	1			Circuit Foil Services	Copper Foil	0.7	COPPER FOIL	17.780
				ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
				ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
2	- I A		1	ELITE	EMC827(I)	0.005 CORE 0.5/0.5	FR4	17.780 127.000
3								17.780
				ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
	į			ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
4	- I <u>4</u> 3				5100007/0		50.4	17.780
5				ELITE	EMC827(I)	0.004 CORE 0.5/0.5	FR4	101.600 17.780
				ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
				ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
6								17.780
7				ELITE	EMC827(I)	0.004 CORE 0.5/0.5	FR4	101.600
/	~			ELITE	ELITE007(I)	106 PREPREG	FR4	17.780 50.800
	00			ELITE	ELITE827(I)		FR4 FR4	50.800
8	1524 +10.00% / -10.00%			ELITE	ELITE827(I)	106 PREPREG	FR4	17.780
	- %0			ELITE	EMC827(I)	0.004 CORE 0.5/0.5	FR4	101.600
9	0.0							17.780
	+ +			ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
	152			ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
10	- I <u>4</u> 3			ELITE	EMC827(I)	0.004 CORE 0.5/0.5	FR4	17.780 101.600
11	■			conc	LINC027(1)	0.004 CONE 0.5/0.5	1114	17.780
				ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
	Ē			ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
12								17.780
13				ELITE	EMC827(I)	0.004 CORE 0.5/0.5	FR4	101.600 17.780
				ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
				ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
14								17.780
				ELITE	EMC827(I)	0.005 CORE 0.5/0.5	FR4	127.000
15								17.780
				ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
				ELITE	ELITE827(I)	106 PREPREG	FR4	50.800
16	▼			Circuit Foil Services	Copper Foil	0.7	COPPER FOIL	17.780
				Taiyo	PSR-4000 GPO1EU	Taiyo PSR-4000	SolderMask	


The following is the final 16-layer PCB stack-up for the SMT6657:

The layer build is this:


,	
ТОР	- Top, main component side.
INNER5	- Differential pairs, impedance controlled.
GND	- Reference plane for above layer.
INNER1	
PWR1	- Split power plane.
INNER2	
INNER7	
PWR2	- Split power plane.
PWR3	- Split power plane.
INNER8	
INNER4	
PWR4	- Split power plane.
INNER3	
GND	- Reference plane for below layer.
INNER6	- Differential pairs, impedance controlled.
BOTTOM	- Bottom, mainly passive components.

4.4PCB Layout4.4.1 Main Board

Below is an image of the top (red) and bottom (blue) layers:

4.4.2 Front Panel Interface Board

5 Physical Properties

Dimensions	90mm	96mm		
Weight	<400 grams			

Voltage	Power (estimate includes FMC)
5V	30.5W
3.3V	11.9W

RH	10-80%
Operating Temperature	0° C to $+50^{\circ}$ C

MTBF	> 90,000 hours

PCB number of layers	12-16
PCB finish	ENIG

6 Verification, Review & Validation Procedures

The SMT6657 is a high reliability product, and all design procedures, production and testing maximise product reliability, and are carried out in accordance with the Sundance Quality Procedures (ISO9001).

See: <u>http://www.sundance.com/web/files/static.asp?pagename=quality</u>

7 Safety

This module presents no hazard to the user when in normal use.

8 EMC Statement of Compliance

This module is designed to operate from within an enclosed host system, which is built to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate enclosure.

This module is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the output cables.

Short circuiting any output to ground does not cause a host system to lock up or reboot.

9 Ordering Information

The Xilinx Kintex FPGA KU040 which is slightly larger than the KU035, can be fitted at assembly as packaging is identical.

Order numbers:

SMT6657-KU35 = Xilinx KU035 FPGA SMT6657-KU40 = Xilinx KU040 FPGA