

Dual NVIDIA RTX6000 Liquid Cooled GPU Server THERMAL TEST REPORT

Product	H/W	System	DQA	DQA
Manager	Leader	Engineer	Leader	Engineer
Vinnie Yuan	James Chan	Darren Cheng	Jason Liu	Marc Liu

Date: 15/09/2021

Test Report Revision Date: Sep. 15. 2021

INDEX

1. SYSTEM SPEC
1-1. Product Photos2
1-2. System Configuration2
2. TEST PLAN
2-1 TESTING WITH LIQUID COOLED SYSTEM
2-1-1. THERMAL MEASUREMENT PROCESS
2-1-2. THERMAL TESTING PHOTOS4
2-1-3. Test Result
2-2 TESTING WITHOUT LIQUID COOLED SYSTEM AFTER
USING LIQUID COOLED SYSTEM6
2-2-1. THERMAL MEASUREMENT PROCESS
2-2-2. THERMAL TESTING PHOTOS7
2-2-3. TEST RESULT
2-3 TESTING WITHOUT LIQUID COOLED SYSTEM9
2-3-1. THERMAL MEASUREMENT PROCESS
2-3-2. Thermal Testing Photos10
2-3-3. Test Result

1. SYSTEM SPEC

1-1. PRODUCT PHOTOS

1-2. SYSTEM CONFIGURATION

System Configuration					
Item	Vendor	Description			
Motherboard	Motherboard SUPERMICRO X12SPZ-SPLN6F				
CPU	Intel	ES SMP QUYUL/L0 ICX-SV 16C 2.6G			
CIU	Inter	24MB FC-LGA16A 185w			
Memory	Samsung	32GB RDIMM DDR4			
GPU	NVIDIA	RTX 3070			
SATA port	innodisk	SSD 64G			
		Quad LAN with 1GbE with Intel® I350-AM4			
LAN1	Intel	Dual LAN with Broadcom BCM57414 25G			
		SFP28			

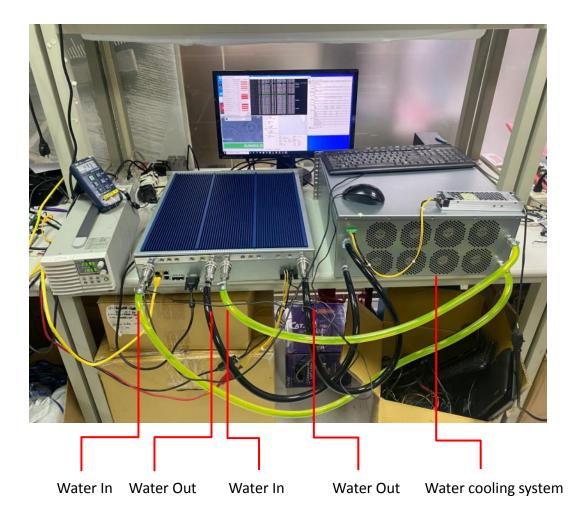
2. Test Plan

2.1 TESTING WITH LIQUID COOLED SYSTEM

2-1-1. Thermal Measurement Process

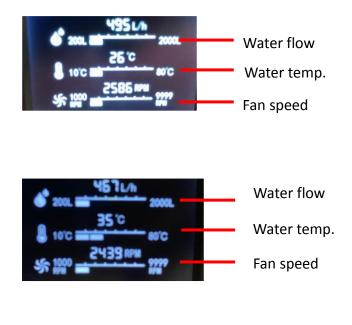

AV1000 liquid cooled system + EUT testing with 100% full loading of CPU @25 C.

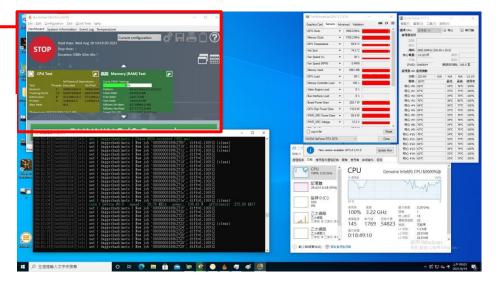
Test Purpose	The purpose of performing thermal profile test is to identify potential thermal problem of the EUT. And it is to aid products in reliability assessment considering that semiconductor failure rates rise rapidly with increasing junction temperature In case of systems cooling, patterns will vary with stacking choices, temperature/thermal mapping can aid in the development of optimum tacking arrangements			
Test Equipment	 KSON THS-B4T-150 Chamber YOKOGAWA MV1000, Thermometer (FLUKE50D K/J) Infrared thermal imaging camera Model TVS-200EX 			
Quantity Tested	Minimum 1 Set			
Test Software	Passmark Burn-In Test under Windows 10 NiceHashMiner For Graphic Card			
Test Procecedure	 Thermal pre-scan measurement: Temperature: 24~26°C/40~60% RH Capture thermal IR photo for whole boards after the EUT execute passmark burn lading during 1 hour at least. Thermal actual measurement: a. Select the test points according to the IR photo and attach thermocouples to the b. Put the EUT in thermal chamber and set the temperature profile of as test specification 	e hot points ment to run Max n value for each		
Test diagram of curves	70 65 60 55 50 60 45 60 45 60 45 60 35 70 30 70 25 CPU T-J (°C) GPU T-J (°C) GPU T-J (°C) CPU T-J (°C) GPU T-J (°C)			


2-1-2. THERMAL TESTING PHOTOS

AV1000

CH1	CPU
CH2	CPU Heatsink





2-1-3. TEST RESULT @25°C

Point		3HR	19HR
CPU	Frequency(GHz)	3.20	3.22
	СРU Т-Ј (°С)	63	65
GPU Frequency(GHz)		1.95	1.95
GPU T-J (℃)		58.2	59.9
Water Tem. IN		26	26
Water Tem. OUT		35	35
Water Flow(L/H)		467	467
CH1	CH1 CPU(℃)		63.3
CH2 CPU Heatsink(°C)		60	62.2

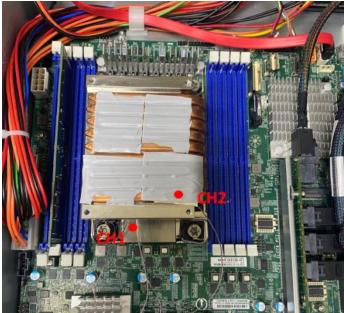
Testing with liquid cooled system @25℃, @18h 43m, Water temp. In: 26℃, Water temp. Out: 35℃, CPU Frequency: 3.22 GHz GPU Frequency: 1.95 GHz

2.2 TESTING WITHOUT LIQUID COOLED SYSTEM AFTER

USING LIQUID COOLED SYSTEM

2-2-1. Thermal Measurement Process

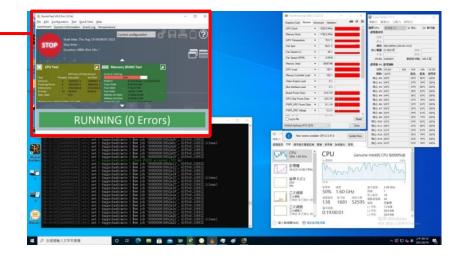
<u>Stress Testing : Simulation with cooled system operation testing sudden failure status</u> for AV1000 with 100% full loading of CPU @25 °C.


Test Purpose	The purpose of performing thermal profile test is to identify potential thermal problem is to aid products in reliability assessment considering that semiconductor failure rates increasing junction temperature In case of systems cooling, patterns will vary with stacking choices, temperature/therm mapping can aid in the development of optimum tacking arrangements	rise rapidly with
Test Equipment	 KSON THS-B4T-150 Chamber YOKOGAWA MV1000, Thermometer (FLUKE50D K/J) Infrared thermal imaging camera Model TVS-200EX 	
Quantity Tested	Minimum 1 Set	
Test Software	Passmark Burn-In Test under Windows 10 NiceHashMiner For Graphic Card	
Test Procecedure	 Thermal pre-scan measurement: Temperature: 24~26°C/40~60%RH Capture thermal IR photo for whole boards after the EUT execute passmark burn-i lading during 1 hour at least. Thermal actual measurement: a. Select the test points according to the IR photo and attach thermocouples to the I b. Put the EUT in thermal chamber and set the temperature profile of as test specification 	hot points eent to run Max value for each
Test diagram of	Environment defines for 8 hours	
curves		
Test picture	95 90 85 80 75 70 65 60 CPU T-J (°C) GPU T-J (°C) CPU (°C) CPU Heatsink(°C)	→ 5min → 30min Smin: CPU Frequency(GHz): 1.60 GHz GPU Frequency(GHz): 1.92 GHz 30min: CPU Frequency(GHz): 0.96 GHz GPU Frequency(GHz): 1.515 GHz

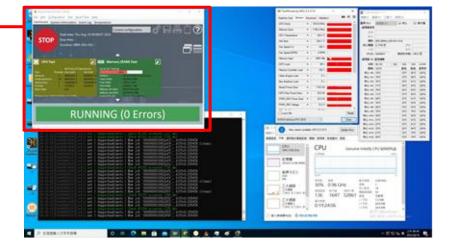
2-2-2. THERMAL TESTING PHOTOS

CH1	CPU
CH2	CPU Heatsink

-


AV1000

2-2-3. TEST RESULT @25℃


Point		5min	30min	1HR
CPU	Frequency(GHz)	1.60	0.96	Error
СРU Т-Ј (°С)		69	70	Error
GPU Frequency(GHz)		1.92	1.515	Error
GPU T-J (℃)		75	89.4	Error
CH1	CPU(℃)	65	67	Error
CH2 CPU Heatsink ($^{\circ}$ C)		64	66	Error

Testing without liquid cooled system after using liquid cooled system @25℃, @15m, CPU Frequency: 1.6 GHz GPU Frequency: 1.92 GHz

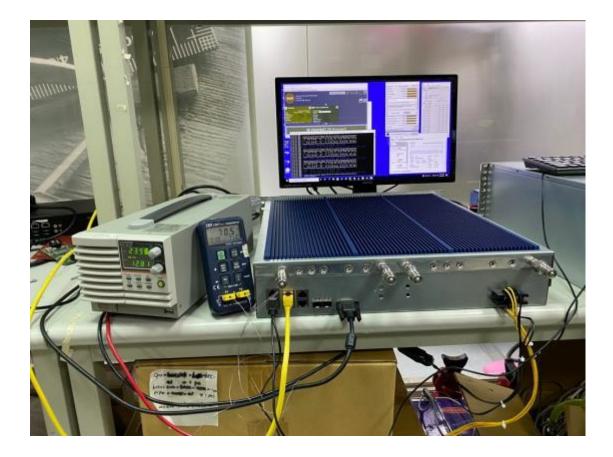
Testing without liquid cooled system after using liquid cooled system @25℃, @30m, **CPU Frequency:** 0.96 GHz

GPU Frequency: 1.515 GHz

2-3. TESTING WITHOUT LIQUID COOLED SYSTEM

2-3-1. Thermal Measurement Process

Stress Testing : Simulation without cooled system operation testing status for AV1000 with 100% full loading of CPU @25 °C.

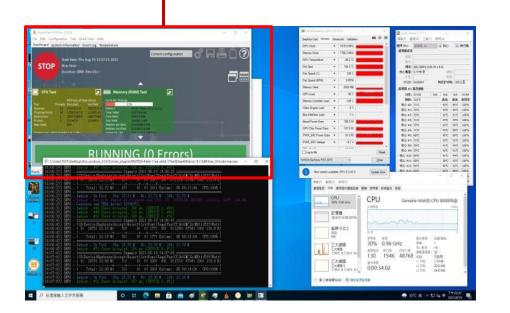

Test Purpose	The purpose of performing thermal profile test is to identify potential thermal problem of the EUT. And it is to aid products in reliability assessment considering that semiconductor failure rates rise rapidly with increasing junction temperature In case of systems cooling, patterns will vary with stacking choices, temperature/thermal mapping can aid in the development of optimum tacking arrangements				
Test Equipment	 KSON THS-B4T-150 Chamber YOKOGAWA MV1000, Thermometer (FLUKE50D K/J) Infrared thermal imaging camera Model TVS-200EX 				
Quantity Tested	Minimum 1 Set				
Test Software	Passmark Burn-In Test under Windows 10 NiceHashMiner For Graphic Card				
Test Procecedure	 Thermal pre-scan measurement: Temperature: 24~26°C/40~60% RH Capture thermal IR photo for whole boards after the EUT execute passmark burn-in lading during 1 hour at least. Thermal actual measurement: a. Select the test points according to the IR photo and attach thermocouples to the h b. Put the EUT in thermal chamber and set the temperature profile of as test specification c. Turn on the thermal chamber and power on the EUT to enter windows environme Power Test + 3DMARK 2003 application program d. After the EUT executing the test software for 4 hours, record thermal maximum thermocouples point. e. Turn off the thermal chamber and EUT f. Verify and check recorded figure of each components to its' operating temperature range listed in specification/approval sheet of each measured component 	ot points ent to run Max value for each			
Test diagram of curves	95 90 85 80 75 70 65 60 CPU T-J (°C) GPU T-J (°C) CPU Heatsink(°C)	 → Smin → JOmin → HR 5min: CPU Frequency(GHz): 3.55 GHz GPU Frequency(GHz): 1.935 GHz 30min: CPU Frequency(GHz): 0.96 GHz GPU Frequency(GHz): 1.515 GHz 30min: CPU Frequency(GHz): 0.96 GHz GPU Frequency(GHz): 1.515 GHz 30min: CPU Frequency(GHz): 0.96 GHz GPU Frequency(GHz): 1.5 GHz 			

2-3-2. Thermal Testing Photos

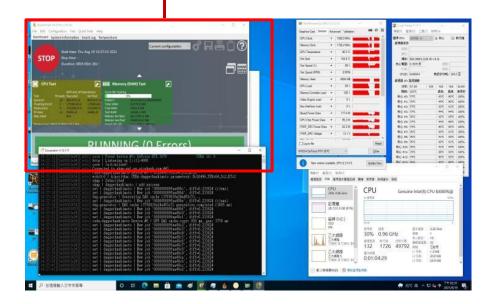
CH1	CPU
CH2	CPU Heatsink

2-3-3. TEST RESULT @25℃

Point		5min	30min	1HR	1.5HR
CPL	J Frequency(GHz)	3.55	0.96	0.96	Error
СРU Т-Ј (℃)		85	71	77	Error
GPU Frequency(GHz)		1.935	1.515	1.5	Error
	GPU T-J (℃)	67.8	89.2	90.3	Error
CH1	CPU(℃)	80	70.6	77.1	Error
CH2	CPU Heatsink(℃)	78.7	71.4	77.7	Error



Testing without liquid cooled system $(@25^{\circ}C, @30m,)$


CPU Frequency: 0.96 GHz

GPU Frequency: 1.515 GHz

Testing without liquid cooled system @25℃, @1h, CPU Frequency: 0.96 GHz GPU Frequency: 1.5 GHz

7STARLAKE